
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.035, Fall 2016 Handout — Semantic Analysis Project Wednesday, Sep 21

DUE: Wednesday, Oct 5, 11:59 pm

Extend your compiler to find, report, and recover from semantic errors in Decaf programs. Most
semantic errors can be checked by testing the rules enumerated in the section “Semantic Rules”
of the Decaf Spec. These rules are repeated in this handout as well. However, you should read
the Decaf Spec in its entirety to make sure that your compiler catches all semantic errors implied
by the language definition. We have attempted to provide a precise statement of the semantic
rules. If you feel some semantic rule in the language definition may have multiple interpretations,
you should work with the interpretation that sounds most reasonable to you and clearly list your
assumptions in your project documentation (you can also send email to 6.035-staff@mit.edu

asking for clarification).

This part of the project includes the following tasks:

1. Create a high-level intermediate representation (IR) tree. You can do this either by instructing
ANTLR to create one for you, adding actions to your grammar to build a tree, or walking a
generic ANTLR tree and building a tree on the way. The problem of designing an IR will be
discussed in the lectures; some hints are given in the final section of this handout.

When running in debug mode, your driver should pretty-print the constructed IR tree in
some easily-readable form suitable for debugging.

2. Build symbol tables for the methods. (A symbol table is an environment, i.e. a mapping from
identifiers to semantic objects such as variable declarations. Environments are structured
hierarchically, in parallel with source-level constructs, such as method-bodies, loop-bodies,
etc.)

3. Perform all semantic checks by traversing the IR and accessing the symbol tables. Note: the
run-time checks are not required for this assignment.

What to Hand In

Follow the directions given in the project overview handout when writing up your project. Your
design documentation should include a description of how your IR and symbol table structures are
organized, as well as a discussion of your design for performing the semantic checks.

Each group will have their own private github repository. Students must take care to avoid ac-
cidentally (or intentionally) sharing their code with other students. Such actions will constitute
cheating. The layout for directories and files in your repository (e.g. build.sh, run.sh) should be
the same as it was for the scanner / parser project. You should also add an AUTHORS file in the
top level of the project with your team members’ names, one per line.

You should be able to run your compiler from the command line with:

./run.sh --target=inter <filename>

The resulting output to the terminal should be a report of all errors (printed to standard output)
encountered while compiling the file. Your compiler should give reasonable and specific error
messages (with line and column numbers and identifier names) for all errors detected. It should
avoid reporting multiple error messages for the same error. For example, if y has not been declared
in the assignment statement “x=y+1;”, the compiler should report only one error message for y,
rather than one error message for y, another error message for the +, and yet another error message
for the assignment.

After you implement the static semantic checker, your compiler should be able to detect and report
all static (i.e., compile-time) errors in any input Decaf program, including lexical and syntax errors
detected by previous phases of the compiler. In addition, your compiler should not report any
messages for valid Decaf programs. However, we do not expect you to avoid reporting spurious
error messages that get triggered by error recovery. It is possible that your compiler might mistak-
enly report spurious semantic errors in some cases depending on the effectiveness of your parser’s
syntactic error recovery.

As mentioned, your compiler should have a debug mode in which the IR and symbol table data
structures constructed by your compiler are printed in some form. This can be run from the
command line using the command:

./run.sh --target=inter --debug <filename>

Getting Started

Once you have finalized your group, the course staff will give you access to your team’s repository.
You may then clone the repository with the following command:

add -f git

cd ~/Private/6.035

git clone https://github.com/6035/<team repository name>.git

cd <team repository name>

You may then want to initialize your repository with one team member’s code; you may do that
by having that team member do the following (note that all team members must have pushed all
changes from their first project to their first project repositories):

git remote add p1 https://github.com/6035/<team member’s username>6035.git

git pull p1 master

Fix the conflict in the readme and then

git commit -a

Finally, you should add the tests repository as a remote:

git remote add tests https://github.com/6035/tests.git

2

Test Cases

The test cases provided for this project have been added to the tests repository on Github. They
can be added to your repo by running (as always)

git pull tests master

Read the comments in the test cases to see what we expect your compiler to do. Points will be
awarded based on how well your compiler performs on these and hidden tests cases. Complete
documentation is also required for full credit.

1 Semantic Rules

These rules place additional constraints on the set of valid Decaf programs besides the constraints
implied by the grammar. A program that is grammatically well-formed and does not violate any
of the following rules is called a legal program. A robust compiler will explicitly check each of
these rules, and will generate an error message describing each violation it is able to find. A robust
compiler will generate at least one error message for each illegal program, but will generate no
errors for a legal program.

1. No identifier is declared twice in the same scope. This includes extern identifiers, which exist
in the global scope.

2. No identifier is used before it is declared.

3. The program contains a definition for a method called main that has no parameters (note
that since execution starts at method main, any methods defined after main will never be
executed).

4. The 〈int literal〉 in an array declaration must be greater than 0.

5. The number and types of arguments in a method call (non-extern) must be the same as the
number and types of the formals, i.e., the signatures must be identical.

6. If a method call is used as an expression, the method must return a result.

7. String literals and array variables may not be used as arguments to non-extern methods.
Note: a[5] is not an array variable, it is an array location

8. A return statement must not have a return value unless it appears in the body of a method
that is declared to return a value.

9. The expression in a return statement must have the same type as the declared result type
of the enclosing method definition.

10. An 〈id〉 used as a 〈location〉 must name a declared local/global variable or formal parameter.

11. For all locations of the form 〈id〉[〈expr〉]

(a) 〈id〉 must be an array variable, and

3

(b) the type of 〈expr〉 must be int.

12. The argument of the sizeof operator must be a variable

13. The 〈expr〉 in an if or a while statement must have type bool.

14. The operands of 〈arith op〉s and 〈rel op〉s must have type int.

15. The operands of 〈eq op〉s must have the same type, either int or bool.

16. The operands of 〈cond op〉s and the operand of logical not (!) must have type bool.

17. The 〈location〉 and the 〈expr〉 in an assignment, 〈location〉 = 〈expr〉, must have the same type.

18. The 〈location〉 and the 〈expr〉 in an incrementing/decrementing assignment, 〈location〉 += 〈expr〉
and 〈location〉 -= 〈expr〉, must be of type int.

19. All break and continue statements must be contained within the body of a for or a while.

Implementation Suggestions

• You will need to declare classes for each of the nodes in your IR. In many places, the hierarchy
of IR node classes will resemble the language grammar. For example, a part of your inheritance
tree might look like this (where indentation represents inheritance):

abstract class Ir

abstract class IrExpression

abstract class IrLiteral

class IrIntLiteral

class IrBooleanLiteral

class IrCallExpr

class IrMethodCallExpr

class IrCalloutExpr

class IrBinopExpr

abstract class IrStatement

class IrAssignStmt

class IrPlusAssignStmt

class IrBreakStmt

class IrContinueStmt

class IrIfStmt

.

.

.

abstract class IrMemberDecl

class IrMethodDecl

class IrFieldDecl

.

.

.

class IrVarDecl

class IrType

4

Classes such as these implement the abstract syntax tree of the input program. In its simplest
form, each class is simply a tuple of its subtrees, for example:

public class IrBinopExpr extends IrExpression

{

private final int operator; |

private final IrExpression lhs; +

private final IrExpression rhs; / \

} lhs rhs

or:

public class IrAssignStmt extends IrStatement

{ :=

private final IrLocation lhs; / \

private final IrExpression rhs; lhs rhs

}

In addition, you’ll need to define classes for the semantic entities of the program, which repre-
sent abstract properties (e.g. expression types, method signatures, etc.) and to establish the
correspondences between them. Some examples: every expression has a type; every variable
declaration introduces a variable; every block defines a scope. Many of these properties are
derived by recursive traversals over the tree.

As far as possible, you should try to make instances of the the symbol classes canonical,
so that they may be compared using reference equality. In Scala, case classes handle this
well. You are strongly advised to design these classes with care, employing good software-
engineering practice and documenting them, as you will be living with them for the next few
months!

• All error messages should be accompanied by the filename, line and column number of the
token most relevant to the error message (use your judgement here). This means that, when
building your abstract-syntax tree (or AST), you must ensure that each IR node contains
sufficient information for you to determine its line number at some later time.

It is not appropriate to throw an exception when encountering an error in the input: doing
so would lead to a design in which at most one error message is reported for each run of the
compiler. A good front-end saves the user time by reporting multiple errors before stopping,
allowing the programmer to make several corrections before having to restart compilation.

• Semantic checking should be done top-down. While the type-checking component of seman-
tic checking can be done in bottom-up fashion, other kinds of checks (for example, detecting
uses of undefined variables) can not.

There are two ways of achieving this. The first is to make use of parser actions in the middle
of productions. This approach may require less code but can be more complex, because more
work needs to be done directly within the ANTLR infrastructure.

A cleaner approach is to invoke your semantic checker on a complete AST after parsing has
finished. The pseudocode for block in this approach would resemble this:

5

void checkBlock(EnvStack envs, Block b) {

envs.push(new Env());

for each statement in b.statements

checkStatement(envs, statement);

envs.pop();

}

In this pseudocode, a new environment is created and pushed on the environment stack, the
body of the block is then checked in the context of this environment stack, and then the new
environment is discarded when the end of the block is reached.

The semantic check, just like code generation and certain optimizations, can often be ex-
pressed as a visitor (which should be familiar from Design Patterns or 6.005/6.170/?) over
the AST. However, the visitor pattern may be most useful in imperative programming, and
is just one design. For languages that support first-class functions, there are certainly many
other interesting designs. Whatever your language and design, we strongly recommend you
separate your logic for performing generic AST operations (traversing, searching, etc) from
the logic of your compiler functions (e.g. semantic checks). Think carefully about what
designs will work well for performing many analyses and operations on an AST!

• One last note: the treatment of negative integer literals requires some care. Recall from the
previous handout that negative integer literals are in fact two separate tokens: the positive
integer literal and a preceding ‘-’. Whenever your top-down semantic checker finds a unary
minus operator, it should check if its operand is a positive integer literal, and if so, replace
the subtree (both nodes) by a single, negative integer literal.

6

