
Recitation 3
Code Generation and x86 Assembly

Explain the previous lectures in plain Java
• Code generation – From IR to CFG

• IR
• Tree like structure

• Two major types of nodes: Expression and Statement

• Nodes can have subnodes recursively (Sub-expressions or sub-statements)

• Should still correspond to the input file (scope mapped to subnodes)

• CFG
• Direct cyclic graph of Basic Blocks

• Each Basic Block is a list of instructions

• Instructions not necessary identical to assembly instructions

• Should have no sub-structure
• Each instruction takes some operands, and operands must be imm, reg, or mem

• Only branch at the end of a Basic Block

Explain the previous lectures in plain Java
• Use Visitor Pattern (6.005)

• Case 1: Add and Assign
• Decaf: y = a + 1;

• Style 1: Keep track of returnVar

protected void visit(Add node) {
Variable left = this.compile(node.left);
Variable right = this.compile(node.right);

this.returnVar = new Variable();
this.currentBasicBlock.add(

new Instruction(this.returnVar, Op.ADD,
left, right)

);
}

protected void visit(Assign node) {
Variable value = this.compile(node.value);
Variable var = node.var;

this.currentBasicBlock.add(
new Instruction(var, Op.MOV, value)

);
}

Output:

TEMP_1 = ADD a, $1
y = MOV TEMP_1

Take care of this in optimization (Copy Propagation)

Explain the previous lectures in plain Java
• Use Visitor Pattern (6.005)

• Case 1: Add and Assign
• Decaf: y = a + 1;

• Style 2: Keep track of returnVar, assignTarget

protected void visit(Add node) {
if (this.assignTarget != null) {

this.returnVar = this.assignTarget;
this.assignTarget = null;

} else {
this.returnVar = new Variable();

}

Variable left = this.compile(node.left);
Variable right = this.compile(node.right);
this.currentBasicBlock.add(

new Instruction(this.returnVar, Op.ADD,
left, right)

);
}

protected void visit(Assign node) {
this.assignTarget = node.var;
this.compile(node.value);

}

Output:

y = ADD a, $1

Explain the previous lectures in plain Java
• Use Visitor Pattern (6.005)

• Case 2: If Statement
• Decaf: if (a || b) {t} else {f};

• Keep track of returnVar, trueTarget, falseTarget
protected void visit(Or node) {

if (this.trueTarget != null) {
// This bool expr is being evaluated
BasicBlock right = new BasicBlock();
BasicBlock currentTrue = this.trueTarget;
BasicBlock currentFalse = this.falseTarget;
this.falseTarget = right;
this.compile(node.left);

this.currentBasicBlock = right;
this.trueTarget = currentTrue;
this.falseTarget = currentFalse;
this.compile(node.right);

} else {
// This bool expr is being assigned
...

}
}

protected void visit(If node) {
BasicBlock t = new BasicBlock();
BasicBlock f = new BasicBlock();
BasicBlock exit = new BasicBlock();

this.trueTarget = t;
this.falseTarget = f;
this.compile(node.cond);
this.trueTarget = null;
this.falseTarget = null;

this.currentBasicBlock = t;
this.visit(node.trueStatement);
this.currentBasicBlock.add(

new Instruction(null, Op.JMP, exit)
);
...

}

Time to Assemble!

• Basics

• Instructions that you are going to use

• Instructions that you should never use

• Calling convention

• Gotchas and tricks

addq $1, -32(%rbp, %r9, 4)

Parts of an Instruction

• We are using gcc syntax (also known as AT&T syntax) in 6.035

• If you are reading the Intel manual (!), please reverse the order of the
operands.

Instruction: Add

Suffix: Quadword

Pre/Suffix: Quadword

Source Operand Dest Operand

Immediate: constant value of 1 Memory: explain later

Register: *bp

Register: r9*

Pre/Suffix: Quadword (No *fix here)

Size Prefixes/Suffixes

Name Size (bits) Suffix

Byte 8 b

Word 16 w

Doubleword 32 l

Quadword 64 q

For Instruction For Operand

8-bit GP 16-bit GP 32-bit GP 64-bit GP

al ax eax rax

cl cx ecx rcx

dl dx edx rdx

bl bx ebx rbx

spl sp esp rsp

bpl bp ebp rbp

sil si esi rsi

dil di edi rdi

r8l r8w r8d r8

r9l r9w r9d r9

r10l r10w r10d r10

r11l r11w r11d r11

r12l r12w r12d r12

r13l r13w r13d r13

r14l r14w r14d r14

r15l r15w r15d r15

Same row share the same register space
For example, modifying %al changes the
lower 8 bit value of %rax

Most instructions (!) can take a
suffix, even some make no sense
and have no effect, for example
retq. In this case you don’t need
one.

Operand types

• Immediate = Constant

$1234

• Sign extended

• Size types: imm8, imm16, imm32, and imm64 (!)

• Type is automatically derived based on instruction
suffix*

• However only MOV instruction can take imm64

• All other instructions can only take imm32

• Register

%rax

• Size type is self-indicated

• Make sure the size doesn’t contradict with the size
of the instruction

• Memory
• Absolute 0xdeadbeef

• Never use
• rip relative a(%rip)

• Can be short-handed as a
• For global objects

• Indirect
• All components

1234(%rax, %rdi, 4)
displacement(base, index, multiplier)
= *(base + index * multiplier + displacement)
• Multiplier is one of {1, 2, 4, 8} (default = 1)
• Displacement is imm32 (default = 0)
• Handy for array access
• Some components can be missing

1234(%rax, %rdi, 4) = *(%rax)
1234(%rax, %rdi, 4) = *(%rax + $1234)
1234(%rax, %rdi, 4) = *(%rax + %rdi * 1)
1234(%rax, %rdi, 4) = *(%rax + %rdi * 4)
1234(%rax, %rdi, 4) = *($1234 + %rdi * 4)

Valid combination of operands

Src Dest Imm32 Reg Mem

Imm32

Reg

Mem

For most two-operand instructions

Load/Store ??

• There is no instruction for load or store

• Use memory operand for that!

Status Flags

• Every arithmetic instruction sets flags (in %rflags)

• Every conditional jump instruction reads (1 or more) flag(s) and jump if those flags are set to 1

• Jump instructions that you will use: je, jne, jg, jge, jl, jle, and they correspond to the 6 comparison operations.

• However, they only (really) correspond if the last arithmetic instruction you performed is sub or cmp

• For example

• See https://pdos.csail.mit.edu/6.828/2016/readings/i386/appc.htm

if (x < y) {
true_stmt …

} else {
false_stmt …

}

cmpq y, x # x - y
jge .L2

true_stmt …
jmp .L3

.L2
false_stmt …

jmp .L3
.L3

https://pdos.csail.mit.edu/6.828/2016/readings/i386/appc.htm

Declaring functions, strings, and global vars

Functions

Decaf: void main() {...}
.text

.global main

.type main, @function

main:

...

No more type information in assembly

Declaring functions, strings, and global vars

Strings

Decaf: printf("hello, world“);
.section .rodata

str_0:

.string "hello, world"

Using a string
inside a function

...

movq $0, %rax # explain later
movq $str_0, %edi
call printf

Declaring functions, strings, and global vars

Globals

Decaf: int a[10];
.globl a
.bss
.align 32 # optional
.type a, @object
.size a, 80 # size = 8*10

a:
.zero 80

Using a global

Decaf: a[i] = 2;
Decaf: printf("hello, world")

inside a function

...

assume the value of i is in %rax
movq $2, a(, %rax, 8)

Time to Assemble!

• Basics

• Instructions that you are going to use

• Instructions that you should never use

• Calling convention

• Gotchas and tricks

Instructions that you are going to use (probably)

• Arithmetics
• Regular: add, sub, imul, idiv, neg, cmp, test

• Probably (due to optimizations): xor, sal, sar, inc, dec, lea

• Move
• Regular: mov, movsx, push, pop, cqo

• Probably (different IR design): set**

• Probably (optimization): cmov**

• Control flow
• Regular: call, jmp, j**, ret

• Misc
• Regular: nop

Time to Assemble!

• Basics

• Instructions that you are going to use

• Instructions that you should never use

• Calling convention

• Gotchas and tricks

Instructions that you should NOT use
• Unless you know what you are doing
• Arithmetic

• Any ASCII/BCD related arith op
• Any Floating Point op
• Unsigned mul and div (Not to be confused with imul and idiv)

• We use signed integer in decaf, and never use unsigned integer
• and, or, not – these are bitwise operations, not boolean opeartions (see slide 5)

• Move
• xchg – slow, implicit lock if one operand is mem
• Flag manipulation op – you should treat %rflags as a black box.

• Procedural Call
• enter, leave – too slow, just don’t use. Recall 6.004 How to adjust stack

• Control flow
• Any complex op, like repz prefix
• bound – wrong way to do bounds checking
• syscall, int – wrong way to call external functions, libc functions are enough

Time to Assemble!

• Basics

• Instructions that you are going to use

• Instructions that you should never use

• Calling convention

• Gotchas and tricks

Calling convention (The “C” Convention)

• Arguments order - %rdi, %rsi, %rdx, %rcx, %r8, %r9
• Rest (if any) - push to stack from RIGHT to LEFT

• 6.035 Decaf Spec requires arguments themselves should be evaluated from
left to right

• Return - %rax

• Preserved across function calls: %rbx, %rsp, %rbp, %r12-%r15

• For integral-typed values only, including pointers (and don’t worry
about FP values)

Calling convention (The “C” Convention)

• Gotcha 1 – variadic function
• Any external C function with the name like this: *printf*, and *scanf*, and

does not start with ‘v’, is variadic

• For variadic function call, %rax indicates how many FP arguments

• Therefore you need to set %rax to 0 before calling functions like these

• May causes SEGMENTATION FAULT if you don’t do so

• There is no other variadic function in libc, besides those mentioned
above

• There is no variadic function in Decaf

Calling convention (The “C” Convention)

• Gotcha 2 – 16 byte alignment
• Right before a function call (call instruction) , the value of %rsp must be a

multiple of 16

• Right after the call instruction %rip is pushed to stack (%rsp -= 8)
• Formula for stack reserve

[Actual adjust to rsp] = 8 + ceil(([stack space you need for local var] – 8) / 16) * 16

• Stack is aligned before main by the OS, so you need to preserve this invariant

• Only matters if involving some libc functions
• Mostly those invoking a syscall, if you know which ones will

• May causes SEGMENTATION FAULT if you don’t do so

• Doesn’t matter if there is no libc call in the call graph.

Calling convention (The “C” Convention)

• 128 Byte scratch zone below stack
• Enforced by OS

• Don’t need to adjust %rsp in a leaf function

• Useful if you have a register spill

Time to Assemble!

• Basics

• Instructions that you are going to use

• Instructions that you should never use

• Calling convention

• Gotchas and tricks

Add

• add instruction, of course

• There is another instruction to do addition – Load Effective Address

• lea mem, reg – calculate the address value of mem, and store to reg
• lea (reg1, reg2, mult=1), reg3 reg3 = reg1 + reg2 * mult

• lea imm(reg1), reg3 reg3 = imm + reg1

• lea imm(reg1, reg2, mult=1), reg3 reg3 = imm + reg1 + reg2 * mult

• lea imm(, reg2, mult=1), reg3 reg3 = imm + reg2 * mult

• mult is {1, 2, 4, 8}, default is 1

• Useful when you don’t want to modify the value of the augend

• Mostly used for optimizations

Subtract

sub a, b cmp a, b

b = b - a b - a (only set flags, discards result)

Note that this is reversed in Intel handbook, because different syntax

To identify which syntax a manual is using, check if it ever makes imm
as the second operand, in this case it is Intel syntax. The opposite case
means it is GCC syntax.

Multiply

• Do NOT use mul instruction

• Use imul instead

• Destination operand can only be reg

• Two formats
• imul reg/mem, reg (without imm)

• imul a, b b = a * b

• imul imm, reg/mem, reg (with imm)
• imul imm, a, b b = a * imm

Divide
• Both divide and mod use the same instruction –
idiv

• Do NOT use div

• Implicitly reads and writes %rax and %rdx

• %rdx:%rax (128 bit) is dividend, takes reg or mem as
divisor (no imm)
• Cannot reuse %rax or %rdx as divisor, otherwise

you may get floating point error

• %rax is quotient, %rdx is remainder

• Use cqo instruction after you move the 64-bit
dividend to %rax, before idiv instruction
• Since you only have 64-bit int, cqo instruction

performs sign extension to %rax, and puts the
high 64 bits to %rdx

• Don’t just set %rdx to 0, you get wrong results
for negative numbers

• Very slow instruction (30-50 cycles typical)

movq Dividend, %rax
movq Divisor, %r10
cqo
idivq %r10

rdx sign-extend rax Dividend r10 Divisor÷

remainder quotient

Note: Do not check for division by 0 in Decaf

How many branches does it take to check the range?

How many branches does it take to check the range?

• Answer: 1

• Unsigned int hack

int a[10];
a[i] = 3;

Assume i is in %rax
cmpq $10, %rax
jae .handle_error
movq $3, ...

How to terminate the program immediately

movq [whatever exit status], %rdi

call exit

Gotcha: Boolean arguments

• A bool value only occupy partial of a register

• High bits can be arbitrary junk values

• May led to wrong result if you are calling libc functions, since
booleans are treated as integers in C

• Solution – use movzx
• Zero extends bool to int (fill high bits with 0)

Lower from 3-operand IR to 2-operand asm

• 3-operand IR: c = op a b

• Unoptimized code generation
• mov a, %r10

• mov b, %r11

• op %r10, %r11

• mov %r11, c

• Always work, regardless a, b, and c are reg/mem/imm (c cannot be
imm)

Lower from 3-operand IR to 2-operand asm

• 3-operand IR: c = op a b

• Optimized codegen? (you have to do it anyways for Project 5)

• You need to consider the following: For every case in the product
space of all these possible combinations (Most cases can be
combined)
• a in {reg, mem, imm32, imm64} ?

• b in {reg, mem, imm32, imm64} ?

• c in {reg, mem} ?

• a == c? b == c? a == b?

• Is op communicative?

