
Empirical Summary on 
Optimizations

Cost-benefit analysis on implementing different optimizations

Note: empirical data only, may not be accurate



Optimization Explain Performanc
e Speedup

Implementation 
Difficulty

CSE Common Subexpr Elim See lecture notes Negative Medium

CP Copy Propagation See lecture notes Low Easy

CSE + CP See lecture notes Low Trivial

Constant Folding Compute any expressions with known values at compile 
time

Low Easy

DSE Dead Store Elimination Remove variables whose values are never used Low Easy

DCE Dead Code Elimination Remove instructions that can never be executed Low Easy

CF + DSE + DCE Combining these optimizations can reveal more 
instructions that ultimately have no effect on the output

Low Trivial

Loop Invariant Extraction See lecture notes Medium Medium

Register Allocation (Graph
coloring)

See lecture notes High Hard

Register Allocation (Heuristic
+ Greedy + brute force)

For each variable try to assign it to a register and test for 
conflicts 

High Medium



Optimization Explain Performanc
e Speedup

Implementation 
Difficulty

Stack Allocation Similar to Register Allocation, use the least amount of 
stack space to fit the rest of variables by analyzing their 
lifetime

Medium Medium

Stack Coalescing Combining all push/pop’s into one single stack pointer 
adjustment

Medium Easy

Omit Frame (Base) Pointer Use rbp as another scratch register (You can just use rsp
to manage the stack)

Low Easy

Bounds Check Elim Derive the possible range of variables, and eliminate 
bound checks if the variable cannot be out of bounds in 
theory

Medium Hard

Instruction Scheduling See lecture notes Medium Hard

Loop Unrolling Unroll a few iteration of the loop body to maximize the 
utilization of the out-of-order execution engine

Medium-
High?

Very Hard

Function Inline Substitute the function call using the arguments High Very Hard

Vectorization Utilize the Single Instruction Multiple Data capability of 
the CPU

High Extremely Hard

Parallelization Utilize multiple cores on the CPU for parallelizable tasks High Hard



Optimization Explain

Smaller optimizations 

Instruction selection Select faster instructions (sequence) to do the same operations.

Conditional optimizations Conditional instructions are status-flag based, some test/cmp
instruction may be unnecessary 

Tail call optimization If the last statement in a function is a function call, the callee can reuse 
the same stack frame of the caller.

µop fusion Use unsigned comparison in simple loops such as for (i = 0; i < 
100; i += 1)

Branch prediction Put basic block of the unusual path away from the usual path. 

Branch/Jump elimination Use conditional move whenever possible (e.g. a branch that only sets 
one variable), merge two basic blocks connected by unconditional jump

Alignment Data, Functions, and any Jump targets should be aligned to cache line 
(16-byte)


