
Wednesday, October 5
Name

Email

6.035 Fall 2016 Miniquiz #13 5 minutes

The x86-64 Linux calling convention can be summarized as follows.

• The caller uses registers to pass the first 6 arguments to the callee. Given the arguments
in left-to-right order, the order of registers used is: %rdi, %rsi, %rdx, %rcx, %r8, and
%r9. Any remaining arguments are passed on the stack in reverse order so that they
can be popped off the stack in order.

• The callee is responsible for perserving the value of registers %rbp %rbx, and %r12-r15,
as these registers are owned by the caller. The remaining registers (e.g., %r8-r11) are
owned by the callee and are available for general use.

• The callee places its return value in %rax and is responsible for cleaning up its local
variables as well as for removing the return address from the stack.

Consider the following x86-64 assembly code for a function foo.

foo:

enter $(8*2), $0

mov %rdi, -8(%rbp)

mov -8(%rbp), %r12

add $3, %r12

mov %r12, -16(%rbp)

mov -16(%rbp), %rax

leave

ret

Does foo adhere to the Linux calling convention? If not, what is wrong with the code? If
necessary, rewrite the code such that it adheres to the Linux calling convention.

