
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.035 Fall 2016

Test II Solutions

1



I Register Allocation

In this problem, you will perform register allocation for the following code. Each instruction is
labeled with a number. Assume that you do not perform any other optimizations, and none of the
variables is subsequently used.

int a, b, c, d;

1: a = read_int();

2: b = read_int();

3: while (a > b) {

4: c = a - 5;

5: if (c > b) {

6: d = c - 1;

7: a = d + a;

} else {

8: d = c + 1;

9: a = d + a;

}

10: b = a - c;

}

11: print(a);

1. [5 points]: Write the set of def-use chains for each variable in the program. Write
each def-use chain as number pair (d, u) where d is the label of an instruction that defines
the variable and u is the label of an instruction that uses that definition.

Solution:

a: (1, 3) (1, 4) (1, 7) (1, 9) (1, 11) (7, 3) (7, 4) (7, 10) (7, 11) (9, 3) (9, 4) (9, 10) (9, 11)

b: (2, 3) (2, 5) (10, 3) (10, 5)

c: (4, 5) (4, 6) (4, 8) (4, 10)

d: (6, 7) (8, 9)

2



2. [5 points]: Write the set of webs in the program. Write each web as the set of
instructions that belong to the web. We have given you names w1-w7 for the webs, use only
as many names as you need.

Solution:

w1: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

w2: {2, 3, 4, 5, 10}

w3: {4, 5, 6, 7, 8, 9, 10}

w4: {6, 7}

w5: {8, 9}

w6:

w7:

3. [5 points]: Draw the interference graph for the webs. Each node in the interference
graph should represent one web. There should be an edge between two nodes if the two webs
interfere. Label each node with the name (w1-w7) of the corresponding web.

Solution:

w1

w2

w3

w4

w5

3



4. [5 points]: Suppose that the architecture we are targeting for compilation has three
general purpose registers. Can we place all the variables in this code in registers (ignore any
constraint due to calling convention)? If yes, describe an assignment of variables to registers.
If no, explain the reason using your interference graph as part of your justification.

Solution: Yes. The web of b, which is w2, does not interfere with the webs of d, which are
w4 and w5, so b and d can be put in the same register, and the other two variables can occupy
one register each.

a: w1 → register 1

b: w2 → register 2

c: w3 → register 3

d: w4 and w5 → register 2

4



II Parallelization

Consider the following program:

for (i = 0; i < n; i += 1) {

for (j = 0; j < n; j += 1) {

A[i,j] = A[i - 1, j - 2] + 3;

}

}

A[i, j] means the element at the i-th row and j-th column in the 2-dimensional array A. Ignore
out-of-bound array access.

5. [3 points]: Assume that n = 4. In the grid below, circle the dots that represent the
iteration space for this loop. Ignore out-of-range cases. Each dot represents the values of i
and j for an iteration.

Solution:

0 1 2 3

0 • • • •

1 • • • •

2 • • • •

3 • • • •

i

j

6. [5 points]: What is the distance vector for these loops?

Solution: (
1

2

)

5



7. [5 points]: Without any other optimizations or transformations, is either loop fully
parallelizable as a “FORALL” loop? If so, is it the outer loop (i), the inner loop (j), or both,
that can be parallelized?

Solution: Only the inner loop

6



For programs with a sequential portion Ts and a parallelizable portion Tp running on a machine
with n processors, recall Amdahl’s law and the definition of speedup:

T (n) = Ts +
Tp

n

speedup =
T (1)

T (n)

Consider a program where 20% of the operations are sequential and 80% are parallelizable.

8. [4 points]: Assume the program runs on a machine with 8 processors, what is the
speedup?

Solution:

speedup =
T (1)

T (8)
=

1

0.2 + 0.8
8

=
10

3

9. [6 points]: Regardless of the number of processors in the machine, what is the
maximum possible speedup for this computation?

Solution:

speedup =
T (1)

T (∞)
=

1

0.2
= 5

7



III Dataflow Analysis

Your task in this problem is to design a dataflow analysis that will determine whether each variable
v1, ..., vk is odd or even at each point in the program. The program itself will be represented as a
control flow graph with two kinds of assignment statements:

• v = c: sets a variable v to a constant c.

• v1 = v2 + v3: sets a variable v1 to the sum of variables v2 and v3.

10. [5 points]: Design the lattice for this dataflow analysis problem. You should specify
the set S of lattice elements and the least upper bound operator ∨ over the set of lattice
elements. We are expecting each lattice element to record an abstract value for each variable
v1, ..., vk. As part of your definition you should define the set of abstract values.

Solution:

We define the base lattice B = {⊥, 0, 1,>}, where 0 represents all even values, and 1 represents
all odd values. Below is the Hasse diagram defining ∨.

>

0

⊥

1

For clarity, let b ∈ B, we have:

> ∨ b = >
0 ∨ 0 = 0

0 ∨ 1 = >
1 ∨ 0 = >
1 ∨ 1 = 1

⊥ ∨ b = b

For S we have:
S = {[v1 → b1, . . . , vk → bk] : b1, . . . , bk ∈ B}

and

[v1 → b1, . . . , vk → bk] ∨ [v1 → b′1 . . . , vk → b′k] = [v1 → b1 ∨ b′1, . . . , vk → bk ∨ b′k].

8



11. [5 points]: Specify the transfer function for each kind of assignment statement.
Specifically, specify the transfer function fn when the control flow graph node n is of the form
n : v = c and when n is of the form n : v1 = v2 + v3. As part of the solution to this problem
we are expecting you to define a version of + that operates on the abstract values.

Solution:

fv=c(e) = e[v → c % 2]

fv1=v2+v3(e) = e[v1 → e[v2] + e[v3]]

The operator “+” is defined by the following table.

+ > 0 1 ⊥
> > > > ⊥
0 > 0 1 ⊥
1 > 1 0 ⊥
⊥ ⊥ ⊥ ⊥ ⊥

12. [5 points]: Give the abstraction function AF (x) (here x is a program state of the
form [v1 → c1, ..., vk → ck] that specifies a value ci for each variable vi).

Solution:
AF ([v1 → b1, . . . , vk → bk]) = [v1 → b1 % 2, . . . , vk → bk % 2]

9



13. [5 points]: Give a program, in the form of a control-flow graph, for which the meet
over all paths solution to the odd/even analysis problem does not equal the solution that
the dataflow analysis algorithm produces. If no such program exists, explain why it does not
exist.

Solution:

x = 1;

1

x = x + 2;

10



14. [5 points]: Give a program, in the form of a control-flow graph, that has multiple
fixed-point solutions to the dataflow equations that your analysis generates. For this pro-
gram, provide at least two of the multiple fixed-point solutions. If no such program exists,
explain why it does exist.

Solution:

x = 1;

1

x = x + 2;

[x→1]

[x→1]

[x→1]

[x→1]

[x→1]

[x→1]

x = 1;

1

x = x + 2;

[x→1]

[x→ >]

[x→ >]

[x→ >]

[x→ >]

[x→ >]

11



IV Lattices

You are working with the reaching definitions lattice. Recall that the elements of this lattice are
sets of definitions, with each set represented as a bit vector with one position for each definition.
Also recall that the order is x ≤ y if x ⊆ y and the least upper bound operator is x ∨ y = x ∪ y.

Your teammate comes to you with a set of transfer functions that includes the transfer function
f(x) = bitwise not x. In other words, f(x) flips all of the bits in x so that f(1011) = 0100 (for
example).

15. [6 points]: Is f(x) monotone? Why or why not?

Solution:

No. 0000 ≤ 1111, but f(0000) = 1111 6≤ f(1111) = 0000.

16. [6 points]: Is f(x) distributive? Why or why not?

Solution:

No. f(01) ∨ f(10) = 10 ∨ 01 = 11, which is not euqal to f(01 ∨ 10) = f(11) = 00.

12



V Loop Optimizations

In the following program, j is a derived induction variable in the family of the base induction
variable i.

i = 0;

while (i < 7) {

j = i * 4 + 10;

sum = sum + j;

i = i + 1;

}

17. [10 points]: Rewrite the program after induction variable recognition and induction
variable strength reduction (and no other optimizations):

Solution:

i = 0;

j = 10;

while (i < 7) {

sum = sum + j;

i = i + 1;

j = j + 4;

}

18. [10 points]: Rewrite the program after induction variable recognition, induction
variable strength reduction, and induction variable elimination (and no other optimizations):

Solution:

j = 10;

while (j < 38) {

sum = sum + j;

j = j + 4;

}

13


