MIT 6.035
Foundations of Dataflow Analysis

Martin Rinard
Laboratory for Computer Science
Massachusetts Institute of Technology
Dataflow Analysis

• Compile-Time Reasoning About
• Run-Time Values of Variables or Expressions
• At Different Program Points
 – Which assignment statements produced value of variable at this point?
 – Which variables contain values that are no longer used after this program point?
 – What is the range of possible values of variable at this program point?
Program Representation

• Control Flow Graph
 – Nodes N – statements of program
 – Edges E – flow of control
 • $\text{pred}(n) =$ set of all predecessors of n
 • $\text{succ}(n) =$ set of all successors of n
 – Start node n_0
 – Set of final nodes N_{final}
Program Points

- One program point before each node
- One program point after each node
- Join point – point with multiple predecessors
- Split point – point with multiple successors
Basic Idea

• Information about program represented using values from algebraic structure called lattice
• Analysis produces lattice value for each program point
• Two flavors of analysis
 – Forward dataflow analysis
 – Backward dataflow analysis
Forward Dataflow Analysis

- Analysis propagates values forward through control flow graph with flow of control
 - Each node has a transfer function f
 - Input – value at program point before node
 - Output – new value at program point after node
 - Values flow from program points after predecessor nodes to program points before successor nodes
 - At join points, values are combined using a merge function

- Canonical Example: Reaching Definitions
Backward Dataflow Analysis

- Analysis propagates values backward through control flow graph against flow of control
 - Each node has a transfer function f
 - Input – value at program point after node
 - Output – new value at program point before node
 - Values flow from program points before successor nodes to program points after predecessor nodes
 - At split points, values are combined using a merge function
- Canonical Example: Live Variables
Partial Orders

• Set P

• Partial order \(\leq \) such that \(\forall x,y,z \in P \)

 \begin{itemize}

 \item \(x \leq x \) \hspace{5cm} \text{(reflexive)}

 \item \(x \leq y \) and \(y \leq x \) implies \(x = y \) \hspace{5cm} \text{(asymmetric)}

 \item \(x \leq y \) and \(y \leq z \) implies \(x \leq z \) \hspace{5cm} \text{(transitive)}
 \end{itemize}

• Can use partial order to define

 \begin{itemize}

 \item Upper and lower bounds

 \item Least upper bound

 \item Greatest lower bound
 \end{itemize}
Upper Bounds

- If \(S \subseteq P \) then
 - \(x \in P \) is an upper bound of \(S \) if \(\forall y \in S. \ y \leq x \)
 - \(x \in P \) is the least upper bound of \(S \) if
 - \(x \) is an upper bound of \(S \), and
 - \(x \leq y \) for all upper bounds \(y \) of \(S \)
 - \(\lor \) - join, least upper bound, lub, supremum, sup
 - \(\lor S \) is the least upper bound of \(S \)
 - \(x \lor y \) is the least upper bound of \(\{x,y\} \)
Lower Bounds

- If $S \subseteq P$ then
 - $x \in P$ is a lower bound of S if $\forall y \in S. \ x \leq y$
 - $x \in P$ is the greatest lower bound of S if
 - x is a lower bound of S, and
 - $y \leq x$ for all lower bounds y of S

- \land - meet, greatest lower bound, glb, infimum, \inf
 - $\land S$ is the greatest lower bound of S
 - $x \land y$ is the greatest lower bound of $\{x,y\}$
Covering

- $x < y$ if $x \leq y$ and $x \neq y$
- x is covered by y (y covers x) if
 - $x < y$, and
 - $x \leq z < y$ implies $x = z$
- Conceptually, y covers x if there are no elements between x and y
Example

- \(P = \{000, 001, 010, 011, 100, 101, 110, 111\} \)
 (standard boolean lattice, also called hypercube)
- \(x \leq y \) if \((x \text{ bitwise and } y) = x\)

Hasse Diagram

- If \(y \) covers \(x \)
 - Line from \(y \) to \(x \)
 - \(y \) above \(x \) in diagram
Lattices

• If $x \land y$ and $x \lor y$ exist for all $x, y \in P$, then P is a lattice.
• If $\land S$ and $\lor S$ exist for all $S \subseteq P$, then P is a complete lattice.
• All finite lattices are complete
Lattices

• If $x \land y$ and $x \lor y$ exist for all $x,y \in P$, then P is a lattice.
• If $\land S$ and $\lor S$ exist for all $S \subseteq P$, then P is a complete lattice.
• All finite lattices are complete.
• Example of a lattice that is not complete
 – Integers I
 – For any $x, y \in I$, $x \lor y = \max(x,y)$, $x \land y = \min(x,y)$
 – But $\lor I$ and $\land I$ do not exist
 – $I \cup \{+\infty, -\infty\}$ is a complete lattice
Top and Bottom

- Greatest element of P (if it exists) is top
- Least element of P (if it exists) is bottom (⊥)
Connection Between \leq, \land, and \lor

- The following 3 properties are equivalent:
 - $x \leq y$
 - $x \lor y = y$
 - $x \land y = x$

- Will prove:
 - $x \leq y$ implies $x \lor y = y$ and $x \land y = x$
 - $x \lor y = y$ implies $x \leq y$
 - $x \land y = x$ implies $x \leq y$

- Then by transitivity, can obtain
 - $x \lor y = y$ implies $x \land y = x$
 - $x \land y = x$ implies $x \lor y = y$
Connecting Lemma Proofs

• Proof of \(x \leq y \) implies \(x \lor y = y \)
 - \(x \leq y \) implies \(y \) is an upper bound of \(\{x, y\} \).
 - Any upper bound \(z \) of \(\{x, y\} \) must satisfy \(y \leq z \).
 - So \(y \) is least upper bound of \(\{x, y\} \) and \(x \lor y = y \)

• Proof of \(x \leq y \) implies \(x \land y = x \)
 - \(x \leq y \) implies \(x \) is a lower bound of \(\{x, y\} \).
 - Any lower bound \(z \) of \(\{x, y\} \) must satisfy \(z \leq x \).
 - So \(x \) is greatest lower bound of \(\{x, y\} \) and \(x \land y = x \)
Connecting Lemma Proofs

• Proof of $x \lor y = y$ implies $x \leq y$
 – y is an upper bound of $\{x, y\}$ implies $x \leq y$

• Proof of $x \land y = x$ implies $x \leq y$
 – x is a lower bound of $\{x, y\}$ implies $x \leq y$
Lattices as Algebraic Structures

• Have defined \lor and \land in terms of \leq
• Will now define \leq in terms of \lor and \land
 – Start with \lor and \land as arbitrary algebraic operations that satisfy associative, commutative, idempotence, and absorption laws
 – Will define \leq using \lor and \land
 – Will show that \leq is a partial order
• Intuitive concept of \lor and \land as information combination operators (or, and)
Algebraic Properties of Lattices

Assume arbitrary operations \lor and \land such that

- $(x \lor y) \lor z = x \lor (y \lor z)$ \hspace{1cm} (associativity of \lor)
- $(x \land y) \land z = x \land (y \land z)$ \hspace{1cm} (associativity of \land)
- $x \lor y = y \lor x$ \hspace{1cm} (commutativity of \lor)
- $x \land y = y \land x$ \hspace{1cm} (commutativity of \land)
- $x \lor x = x$ \hspace{1cm} (idempotence of \lor)
- $x \land x = x$ \hspace{1cm} (idempotence of \land)
- $x \lor (x \land y) = x$ \hspace{1cm} (absorption of \lor over \land)
- $x \land (x \lor y) = x$ \hspace{1cm} (absorption of \land over \lor)
Connection Between \land and \lor

- $x \lor y = y$ if and only if $x \land y = x$

- Proof of $x \lor y = y$ implies $x = x \land y$

 $$x = x \land (x \lor y) \quad \text{(by absorption)}$$
 $$= x \land y \quad \text{(by assumption)}$$

- Proof of $x \land y = x$ implies $y = x \lor y$

 $$y = y \lor (y \land x) \quad \text{(by absorption)}$$
 $$= y \lor (x \land y) \quad \text{(by commutativity)}$$
 $$= y \lor x \quad \text{(by assumption)}$$
 $$= x \lor y \quad \text{(by commutativity)}$$
Properties of \(\leq \)

- Define \(x \leq y \) if \(x \lor y = y \)
- Proof of transitive property. Must show that

\[x \lor y = y \text{ and } y \lor z = z \text{ implies } x \lor z = z \]

\[
x \lor z = x \lor (y \lor z) \quad \text{(by assumption)}
= (x \lor y) \lor z \quad \text{(by associativity)}
= y \lor z \quad \text{(by assumption)}
= z \quad \text{(by assumption)}
\]
Properties of \leq

- Proof of asymmetry property. Must show that $x \lor y = y$ and $y \lor x = x$ implies $x = y$

 \[
 x = y \lor x \quad \text{(by assumption)} \\
 = x \lor y \quad \text{(by commutativity)} \\
 = y \quad \text{(by assumption)}
 \]

- Proof of reflexivity property. Must show that $x \lor x = x$

 \[
 x \lor x = x \quad \text{(by idempotence)}
 \]
Properties of \leq

- Induced operation \leq agrees with original definitions of \lor and \land, i.e.,
 - $x \lor y = \sup \{x, y\}$
 - $x \land y = \inf \{x, y\}$
Proof of \(x \lor y = \sup \{ x, y \} \)

- Consider any upper bound \(u \) for \(x \) and \(y \).
- Given \(x \lor u = u \) and \(y \lor u = u \), must show \(x \lor y \leq u \), i.e., \((x \lor y) \lor u = u \)

\[
\begin{align*}
 u &= x \lor u \quad \text{(by assumption)} \\
 &= x \lor (y \lor u) \quad \text{(by assumption)} \\
 &= (x \lor y) \lor u \quad \text{(by associativity)}
\end{align*}
\]
Proof of $x \land y = \inf \{x, y\}$

• Consider any lower bound l for x and y.

• Given $x \land l = l$ and $y \land l = l$, must show $l \leq x \land y$, i.e., $(x \land y) \land l = l$

 $l = x \land l$ \hspace{1cm} (by assumption)

 $= x \land (y \land l)$ \hspace{1cm} (by assumption)

 $= (x \land y) \land l$ \hspace{1cm} (by associativity)
Chains

• A set S is a chain if $\forall x, y \in S. \ y \leq x$ or $x \leq y$
• P has no infinite chains if every chain in P is finite
• P satisfies the ascending chain condition if for all sequences $x_1 \leq x_2 \leq \ldots$ there exists n such that $x_n = x_{n+1} = \ldots$
Application to Dataflow Analysis

- Dataflow information will be lattice values
 - Transfer functions operate on lattice values
 - Solution algorithm will generate increasing sequence of values at each program point
 - Ascending chain condition will ensure termination

- Will use \lor to combine values at control-flow join points
Transfer Functions

• Transfer function $f: P \to P$ for each node in control flow graph
• f models effect of the node on the program information
Transfer Functions

Each dataflow analysis problem has a set F of transfer functions $f: P \rightarrow P$

- Identity function $i \in F$
- F must be closed under composition: $\forall f, g \in F. \text{ the function } h = \lambda x. f(g(x)) \in F$
- Each $f \in F$ must be monotone: $x \leq y \Rightarrow f(x) \leq f(y)$
- Sometimes all $f \in F$ are distributive: $f(x \lor y) = f(x) \lor f(y)$
- Distributivity implies monotonicity
Distributivity Implies Monotonicity

• Proof of distributivity implies monotonicity
• Assume \(f(x \lor y) = f(x) \lor f(y) \)
• Must show: \(x \lor y = y \) implies \(f(x) \lor f(y) = f(y) \)

\[
\begin{align*}
f(y) &= f(x \lor y) \quad \text{(by assumption)} \\
&= f(x) \lor f(y) \quad \text{(by distributivity)}
\end{align*}
\]
Putting Pieces Together

- Forward Dataflow Analysis Framework
- Simulates execution of program forward with flow of control
Forward Dataflow Analysis

• Simulates execution of program forward with flow of control

• For each node n, have
 – in_n – value at program point before n
 – out_n – value at program point after n
 – f_n – transfer function for n (given in_n, computes out_n)

• Require that solution satisfy
 – $\forall n. \text{out}_n = f_n(\text{in}_n)$
 – $\forall n \neq n_0. \text{in}_n = \lor \{ \text{out}_m . m \in \text{pred}(n) \}$
 – $\text{in}_{n_0} = I$
 – Where I summarizes information at start of program
Dataflow Equations

• Compiler processes program to obtain a set of dataflow equations

 \[\text{out}_n := f_n(\text{in}_n) \]

 \[\text{in}_n := \lor \{ \text{out}_m . m \text{ in pred}(n) \} \]

• Conceptually separates analysis problem from program
Worklist Algorithm for Solving Forward Dataflow Equations

for each \(n \) do \(\text{out}_n := f_n(\perp) \)
\(\text{in}_n := I; \text{out}_n := f_{n_0}(I) \)

worklist := \(N \setminus \{ n_0 \} \)

while worklist \(\neq \emptyset \) do

 remove a node \(n \) from worklist

 \(\text{in}_n := \bigvee \{ \text{out}_m \cdot m \text{ in pred}(n) \} \)

 \(\text{out}_n := f_n(\text{in}_n) \)

 if \(\text{out}_n \) changed then
 worklist := worklist \cup \text{succ}(n)
Correctness Argument

- Why result satisfies dataflow equations
- Whenever process a node \(n \), set \(\text{out}_n := f_n(\text{in}_n) \)
 Algorithm ensures that \(\text{out}_n = f_n(\text{in}_n) \)
- Whenever \(\text{out}_m \) changes, put \(\text{succ}(m) \) on worklist.
 Consider any node \(n \in \text{succ}(m) \). It will eventually come off worklist and algorithm will set
 \[
 \text{in}_n := \lor \{ \text{out}_m \cdot m \text{ in } \text{pred}(n) \}
 \]
 to ensure that \(\text{in}_n = \lor \{ \text{out}_m \cdot m \text{ in } \text{pred}(n) \} \)
- So final solution will satisfy dataflow equations
Termination Argument

• Why does algorithm terminate?
• Sequence of values taken on by in_n or out_n is a chain. If values stop increasing, worklist empties and algorithm terminates.
• If lattice has ascending chain property, algorithm terminates
 – Algorithm terminates for finite lattices
 – For lattices without ascending chain property, use widening operator
Widening Operators

• Detect lattice values that may be part of infinitely ascending chain
• Artificially raise value to least upper bound of chain
• Example:
 – Lattice is set of all subsets of integers
 – Could be used to collect possible values taken on by variable during execution of program
 – Widening operator might raise all sets of size n or greater to TOP (likely to be useful for loops)
Reaching Definitions

- \(P = \text{powerset of set of all definitions in program (all subsets of set of definitions in program)} \)
- \(\lor = \cup \) (order is \(\subseteq \))
- \(\bot = \emptyset \)
- \(I = \text{in}_{n_0} = \bot \)
- \(F = \text{all functions } f \text{ of the form } f(x) = a \cup (x-b) \)
 - \(b \) is set of definitions that node kills
 - \(a \) is set of definitions that node generates
- General pattern for many transfer functions
 - \(f(x) = \text{GEN} \cup (x-\text{KILL}) \)
Does Reaching Definitions Framework Satisfy Properties?

- \(\subseteq \) satisfies conditions for \(\leq \)
 - \(x \subseteq y \) and \(y \subseteq z \) implies \(x \subseteq z \) (transitivity)
 - \(x \subseteq y \) and \(y \subseteq x \) implies \(y = x \) (asymmetry)
 - \(x \subseteq x \) (reflexive)

- \(F \) satisfies transfer function conditions
 - \(\lambda x.\emptyset \cup (x-\emptyset) = \lambda x.x \in F \) (identity)
 - Will show \(f(x \cup y) = f(x) \cup f(y) \) (distributivity)
 \[
 f(x) \cup f(y) = (a \cup (x-b)) \cup (a \cup (y-b))
 = a \cup (x-b) \cup (y-b) = a \cup ((x \cup y) - b)
 = f(x \cup y)
 \]
Does Reaching Definitions Framework Satisfy Properties?

• What about composition?
 – Given \(f_1(x) = a_1 \cup (x-b_1) \) and \(f_2(x) = a_2 \cup (x-b_2) \)
 – Must show \(f_1(f_2(x)) \) can be expressed as \(a \cup (x - b) \)

 \[
 f_1(f_2(x)) = a_1 \cup ((a_2 \cup (x-b_2)) - b_1)
 \]

 \[
 = a_1 \cup ((a_2 - b_1) \cup ((x-b_2) - b_1))
 \]

 \[
 = (a_1 \cup (a_2 - b_1)) \cup ((x-b_2) - b_1))
 \]

 \[
 = (a_1 \cup (a_2 - b_1)) \cup (x-(b_2 \cup b_1))
 \]

 – Let \(a = (a_1 \cup (a_2 - b_1)) \) and \(b = b_2 \cup b_1 \)
 – Then \(f_1(f_2(x)) = a \cup (x - b) \)
General Result

All GEN/KILL transfer function frameworks satisfy

- Identity
- Distributivity
- Composition

Properties
Available Expressions

- $P =$ powerset of set of all expressions in program (all subsets of set of expressions)
- $\lor = \cap$ (order is \supseteq)
- $\perp = P$
- $I = \text{in}_{n_0} = \emptyset$
- $F =$ all functions f of the form $f(x) = a \cup (x-b)$
 - b is set of expressions that node kills
 - a is set of expressions that node generates
- Another GEN/KILL analysis
Concept of Conservatism

• Reaching definitions use \cup as join
 – Optimizations must take into account all definitions that reach along ANY path

• Available expressions use \cap as join
 – Optimization requires expression to reach along ALL paths

• Optimizations must conservatively take all possible executions into account. Structure of analysis varies according to way analysis used.
Backward Dataflow Analysis

- Simulates execution of program backward against the flow of control
- For each node \(n \), have
 - \(\text{in}_n \) – value at program point before \(n \)
 - \(\text{out}_n \) – value at program point after \(n \)
 - \(f_n \) – transfer function for \(n \) (given \(\text{out}_n \), computes \(\text{in}_n \))
- Require that solution satisfies
 - \[\forall n. \text{in}_n = f_n(\text{out}_n) \]
 - \[\forall n \notin N_{\text{final}}. \text{out}_n = \bigvee \{ \text{in}_m \; . \; m \in \text{succ}(n) \} \]
 - \[\forall n \in N_{\text{final}} = \text{out}_n = O \]
 - Where \(O \) summarizes information at end of program
Worklist Algorithm for Solving Backward Dataflow Equations

for each \(n \) do \(\text{in}_n := f_n(\perp) \)

for each \(n \in N_{\text{final}} \) do \(\text{out}_n := O; \text{in}_n := f_n(O) \)

worklist := \(N - N_{\text{final}} \)

while worklist \(\neq \emptyset \) do

 remove a node \(n \) from worklist

 \(\text{out}_n := \lor \{ \text{in}_m . m \in \text{succ}(n) \} \)

 \(\text{in}_n := f_n(\text{out}_n) \)

 if \(\text{in}_n \) changed then

 worklist := worklist \(\cup \) pred(n)
Live Variables

- $P = \text{powerset of set of all variables in program (all subsets of set of variables in program)}$

- $\forall = \cup$ (order is \subseteq)

- $\bot = \emptyset$

- $O = \emptyset$

- $F = \text{all functions } f \text{ of the form } f(x) = a \cup (x-b)$
 - b is set of variables that node kills
 - a is set of variables that node reads
Meaning of Dataflow Results

• Concept of program state s for control-flow graphs
 • Program point n where execution located
 (n is node that will execute next)
 • Values of variables in program

• Each execution generates a trajectory of states:
 - $s_0; s_1; \ldots; s_k$, where each $s_i \in ST$
 - s_{i+1} generated from s_i by executing basic block to
 • Update variable values
 • Obtain new program point n
Relating States to Analysis Result

- Meaning of analysis results is given by an abstraction function $AF: ST \rightarrow P$
- Correctness condition: require that for all states s
 $AF(s) \leq \text{in}_n$
 where n is the next statement to execute in state s
Sign Analysis Example

- Sign analysis - compute sign of each variable \(v \)
- Base Lattice: \(P = \) flat lattice on \(\{-,0,+\} \)

```
       TOP
      /   \
     -     0     +
    / \   / \   / \ 
   -  0  +  -
     \   /   \   /   
      \ /     \ /     
         BOT
```

- Actual lattice records a value for each variable
 - Example element: \([a \rightarrow +, b \rightarrow 0, c \rightarrow -]\)
Interpretation of Lattice Values

• If value of \(v \) in lattice is:
 – BOT: no information about sign of \(v \)
 – -: variable \(v \) is negative
 – 0: variable \(v \) is 0
 – +: variable \(v \) is positive
 – TOP: \(v \) may be positive or negative

• What is abstraction function \(\text{AF} \)?
 – \(\text{AF}([v_1,\ldots,v_n]) = [\text{sign}(v_1), \ldots, \text{sign}(v_n)] \)
 – Where \(\text{sign}(v) = 0 \) if \(v = 0 \), + if \(v > 0 \), - if \(v < 0 \)
Operation \boxtimes on Lattice

<table>
<thead>
<tr>
<th>\boxtimes</th>
<th>BOT</th>
<th>-</th>
<th>0</th>
<th>+</th>
<th>TOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOT</td>
<td>BOT</td>
<td>BOT</td>
<td>0</td>
<td>BOT</td>
<td>BOT</td>
</tr>
<tr>
<td>-</td>
<td>BOT</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>TOP</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+</td>
<td>BOT</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>TOP</td>
</tr>
<tr>
<td>TOP</td>
<td>BOT</td>
<td>TOP</td>
<td>0</td>
<td>TOP</td>
<td>TOP</td>
</tr>
</tbody>
</table>
Transfer Functions

• If \(n \) of the form \(v = c \)
 - \(f_n(x) = x[v\rightarrow+] \) if \(c \) is positive
 - \(f_n(x) = x[v\rightarrow0] \) if \(c \) is 0
 - \(f_n(x) = x[v\rightarrow-] \) if \(c \) is negative

• If \(n \) of the form \(v_1 = v_2 \times v_3 \)
 - \(f_n(x) = x[v_1\rightarrow x[v_2] \otimes x[v_3]] \)

• \(I = TOP \)
 (uninitialized variables may have any sign)
Example

\[a = 1 \]

\[a \rightarrow + \]

\[b = -1 \]

\[a \rightarrow +, \ b \rightarrow - \]

\[a \rightarrow +, \ b \rightarrow \text{TOP} \]

\[c = a \times b \]

\[a \rightarrow +, \ b \rightarrow \text{TOP}, c \rightarrow \text{TOP} \]
Imprecision In Example

Abstraction Imprecision:

\[[a \rightarrow 1] \text{ abstracted as } [a \rightarrow +] \]

\[[a \rightarrow +] \]

\[b = -1 \]

\[[a \rightarrow +, b \rightarrow -] \]

\[[a \rightarrow +, b \rightarrow \text{TOP}] \]

Control Flow Imprecision:

\[[b \rightarrow \text{TOP}] \text{ summarizes results of all executions. In any execution state } s, AF(s)[b] \neq \text{TOP} \]
General Sources of Imprecision

• Abstraction Imprecision
 – Concrete values (integers) abstracted as lattice values (-, 0, and +)
 – Lattice values less precise than execution values
 – Abstraction function throws away information

• Control Flow Imprecision
 – One lattice value for all possible control flow paths
 – Analysis result has a single lattice value to summarize results of multiple concrete executions
 – Join operation \(\lor \) moves up in lattice to combine values from different execution paths
 – Typically if \(x \leq y \), then \(x \) is more precise than \(y \)
Why Have Imprecision

• Make analysis tractable
• Unbounded sets of values in execution
 – Typically abstracted by finite set of lattice values
• Execution may visit unbounded set of states
 – Abstracted by computing joins of different paths
Abstraction Function

- $AF(s)[v] = \text{sign of } v$
 - $AF(n,[a\rightarrow5, b\rightarrow0, c\rightarrow-2]) = [a\rightarrow+, b\rightarrow0, c\rightarrow-]$

- Establishes meaning of the analysis results
 - If analysis says variable has a given sign
 - Always has that sign in actual execution

- Correctness condition:
 - $\forall v. AF(s)[v] \leq in_n[v]$ (n is node for s)
 - Reflects possibility of imprecision
Abstraction Function Soundness

• Will show
 \[\forall v. \ AF(s)[v] \leq \text{in}_n[v] \text{ (n is node for s)}\]
 by induction on length of computation that produced s

• Base case:
 – \[\forall v. \ \text{in}_{n_0}[v] = \text{TOP}, \text{ which implies that}\]
 – \[\forall v. \ AF(s)[v] \leq \text{TOP}\]
Induction Step

• Assume ∀ v. AF(s)[v] ≤ in_n[v] for computations of length k
• Prove for computations of length k+1
• Proof:
 – Given s (state), n (node to execute next), and in_n
 – Find p (the node that just executed), s_p (the previous state), and in_p
 – By induction hypothesis ∀ v. AF(s_p)[v] ≤ in_p[v]
 – Case analysis on form of p
 • If p of the form v = c, then
 – s[v] = c and out_p [v] = sign(c), so
 AF(s)[v] = sign(c) = out_p [v] ≤ in_n[v]
 – If x≠v, s[x] = s_p [x] and out_p [x] = in_p[x], so
 AF(s)[x] = AF(s_p)[x] ≤ in_p[x] = out_p [x] ≤ in_n[x]
 • Similar reasoning if p of the form v_1 = v_2*v_3
Augmented Execution States

• Abstraction functions for some analyses require augmented execution states
 – Reaching definitions: states are augmented with definition that created each value
 – Available expressions: states are augmented with expression for each value
Meet Over Paths Solution

• What solution would be ideal for a forward dataflow analysis problem?

• Consider a path \(p = n_0, n_1, \ldots, n_k, n \) to a node \(n \) (note that for all \(i \), \(n_i \in \text{pred}(n_{i+1}) \))

• The solution must take this path into account:
 \[
 f_p(\bot) = (f_{n_k}(f_{n_{k-1}}(\ldots f_{n_1}(f_{n_0}(\bot)) \ldots)) \leq \text{in}_n
 \]

• So the solution must have the property that
 \[
 \bigvee\{f_p(\bot) \cdot p \text{ is a path to } n\} \leq \text{in}_n
 \]
 and ideally
 \[
 \bigvee\{f_p(\bot) \cdot p \text{ is a path to } n\} = \text{in}_n
 \]
Soundness Proof of Analysis Algorithm

• Property to prove:
 For all paths \(p \) to \(n \), \(f_p(\bot) \leq \text{in}_n \)

• Proof is by induction on length of \(p \)
 – Uses monotonicity of transfer functions
 – Uses following lemma

• Lemma:
 Worklist algorithm produces a solution such that
 \[
 f_n(\text{in}_n) = \text{out}_n
 \]
 if \(n \in \text{pred}(m) \) then \(\text{out}_n \leq \text{in}_m \)
Proof

• Base case: \(p \) is of length 1
 – Then \(p = n_0 \) and \(f_p(\perp) = \perp = \text{in}_{n_0} \)

• Induction step:
 – Assume theorem for all paths of length \(k \)
 – Show for an arbitrary path \(p \) of length \(k+1 \)
Induction Step Proof

- \(p = n_0, \ldots, n_k, n \)
- Must show \(f_k(f_{k-1}(\ldots f_{n_1}(f_{n_0}(\bot)) \ldots)) \leq in_n \)
 - By induction \((f_{k-1}(\ldots f_{n_1}(f_{n_0}(\bot)) \ldots)) \leq in_{n_k} \)
 - Apply \(f_k \) to both sides, by monotonicity we get \(f_k(f_{k-1}(\ldots f_{n_1}(f_{n_0}(\bot)) \ldots)) \leq f_k(in_{n_k}) \)
 - By lemma, \(f_k(in_{n_k}) = out_{n_k} \)
 - By lemma, \(out_{n_k} \leq in_n \)
 - By transitivity, \(f_k(f_{k-1}(\ldots f_{n_1}(f_{n_0}(\bot)) \ldots)) \leq in_n \)
Distributivity

• Distributivity preserves precision
• If framework is distributive, then worklist algorithm produces the meet over paths solution
 – For all n:
 \[\vee \{ f_p(\bot) . p \text{ is a path to } n \} = \text{in}_n \]
Lack of Distributivity Example

- Constant Calculator
- Flat Lattice on Integers

Actual lattice records a value for each variable
- Example element: \([a \mapsto 3, \ b \mapsto 2, \ c \mapsto 5]\)
Transfer Functions

- If n of the form $v = c$
 - $f_n(x) = x[v \rightarrow c]$

- If n of the form $v_1 = v_2 + v_3$
 - $f_n(x) = x[v_1 \rightarrow x[v_2] + x[v_3]]$

- Lack of distributivity
 - Consider transfer function f for $c = a + b$
 - $f([a \rightarrow 3, b \rightarrow 2]) \lor f([a \rightarrow 2, b \rightarrow 3]) = [a \rightarrow \text{TOP}, b \rightarrow \text{TOP}, c \rightarrow 5]$
 - $f([a \rightarrow 3, b \rightarrow 2] \lor [a \rightarrow 2, b \rightarrow 3]) = f([a \rightarrow \text{TOP}, b \rightarrow \text{TOP}]) = [a \rightarrow \text{TOP}, b \rightarrow \text{TOP}, c \rightarrow \text{TOP}]$
Lack of Distributivity Anomaly

\[
\begin{align*}
 a &= 2 \\
 b &= 3 \\
 c &= a + b
\end{align*}
\]

\[
\begin{align*}
 a &= 3 \\
 b &= 2 \\
 c &= a + b
\end{align*}
\]

\[
\begin{align*}
 a &= \text{TOP} \\
 b &= \text{TOP} \\
 c &= \text{TOP}
\end{align*}
\]

Lack of Distributivity Imprecision:

\[
\begin{align*}
 a &= \text{TOP} \\
 b &= \text{TOP} \\
 c &= 5
\end{align*}
\]

What is the meet over all paths solution?
How to Make Analysis Distributive

- Keep combinations of values on different paths

\[
\begin{align*}
\text{a} &= 2 & \text{a} &= 3 \\
\text{b} &= 3 & \text{b} &= 2 \\
\{[a\rightarrow 2, b\rightarrow 3]\} & & \{[a\rightarrow 3, b\rightarrow 2]\} \\
\{[a\rightarrow 2, b\rightarrow 3, c\rightarrow 5], [a\rightarrow 3, b\rightarrow 2, c\rightarrow 5]\}
\end{align*}
\]
Issues

• Basically simulating all combinations of values in all executions
 – Exponential blowup
 – Nontermination because of infinite ascending chains

• Nontermination solution
 – Use widening operator to eliminate blowup
 (can make it work at granularity of variables)
 – Loses precision in many cases
Multiple Fixed Points

- Dataflow analysis generates least fixed point
- May be multiple fixed points
- Available expressions example
Summary

• Formal dataflow analysis framework
 – Lattices, partial orders, least upper bound, greatest lower bound, ascending chains
 – Transfer functions, joins and splits
 – Dataflow equations and fixed point solutions

• Connection with program
 – Abstraction function \(AF: S \rightarrow P \)
 – For any state \(s \) and program point \(n \), \(AF(s) \leq in_n \)
 – Meet over all paths solutions, distributivity