Introduction to Dataflow Analysis
Value Numbering Summary

• Forward symbolic execution of basic block

Maps
 – Var2Val – symbolic value for each variable
 – Exp2Val – value of each evaluated expression
 – Exp2Tmp – tmp that holds value of each evaluated expression

Algorithm
 – For each statement
 • If variables in RHS not in the Var2Val add it with a new value
 • If RHS expression in Exp2Tmp use that Temp
 • If not add RHS expression to Exp2Val with new value
 • Copy the value into a new tmp and add to E XP2Tmp
Copy Propagation Summary

• Forward Propagation within basic block
• Maps
 – tmp2var: tells which variable to use instead of a given temporary variable
 – var2set: inverse of tmp to var. tells which temps are mapped to a given variable by tmp to var
• Algorithm
 – For each statement
 • If any tmp variable in the RHS is in tmp2var replace it with var
 • If LHS var in var2set remove the variables in the set in tmp2var
Dead Code Elimination Summary

- Backward Propagation within basic block
- Map
 - A set of variables that are needed later in computation
- Algorithm
 - Every statement encountered
 - If LHS is not in the set, remove the statement
 - Else put all the variables in the RHS into the set
Summary So far... what’s next

- Till now: How to analyze and transform within a basic block

- Next: How to do it for the entire procedure
Outline

• Reaching Definitions
• Available Expressions
• Liveness
Reaching Definitions

• Concept of definition and use
 – $a = x + y$
 – is a definition of a
 – is a use of x and y

• A definition reaches a use if
 – value written by definition
 – may be read by use
Reaching Definitions

\[
\begin{align*}
\text{s} &= 0, \\
\text{a} &= 4, \\
\text{i} &= 0, \\
\text{k} &= 0
\end{align*}
\]

\[
\begin{align*}
\text{b} &= 1; \\
\text{b} &= 2;
\end{align*}
\]

\[
\begin{align*}
\text{i} &< n \\
\text{s} &= \text{s} + \text{a} \times \text{b}; \\
\text{i} &= \text{i} + 1;
\end{align*}
\]

\text{return s}
Reaching Definitions and Constant Propagation

• Is a use of a variable a constant?
 – Check all reaching definitions
 – If all assign variable to same constant
 – Then use is in fact a constant

• Can replace variable with constant
Is a Constant in $s = s + a \times b$?

Yes!

On all reaching definitions

$a = 4$
Constant Propagation Transform

Yes!
On all reaching definitions
a = 4
Is b Constant in $s = s + a \times b$?

No!

One reaching definition with $b = 1$

One reaching definition with $b = 2$

```markdown
s = 0;
a = 4;
i = 0;
k == 0

b = 1;

b = 2;

i < n

s = s + a \times b;
i = i + 1;

return s
```
Splitting
Preserves Information Lost At Merges

s = 0;
a = 4;
i = 0;
k == 0

b = 1;
b = 2;
i < n

s = s + a*b;
i = i + 1;
return s

s = 0;
a = 4;
i = 0;
k == 0

b = 1;
b = 2;
i < n

s = s + a*b;
i = i + 1;
return s

return s
Splitting
Preserves Information Lost At Merges

```
s = 0;
a = 4;
i = 0;
k == 0
```

```
b = 1;
b = 2;
```

```
i < n
```

```
s = s + a*b;
i = i + 1;
```

```
s = 0;
a = 4;
i = 0;
k == 0
```

```
s = s + a*2;
i = i + 1;
```

```
return s
```

```
s = s + a*1;
i = i + 1;
```

```
return s
```

```
i < n
```

```
return s
```
Computing Reaching Definitions

• Compute with sets of definitions
 – represent sets using bit vectors
 – each definition has a position in bit vector

• At each basic block, compute
 – definitions that reach start of block
 – definitions that reach end of block

• Do computation by simulating execution of program until reach fixed point
1: s = 0;
2: a = 4;
3: i = 0;
4: b = 1;
5: b = 2;
6: s = s + a*b;
7: i = i + 1;

return s
Formalizing Analysis

- Each basic block has
 - IN - set of definitions that reach beginning of block
 - OUT - set of definitions that reach end of block
 - GEN - set of definitions generated in block
 - KILL - set of definitions killed in block
- GEN[s = s + a*b; i = i + 1;] = 0000011
- KILL[s = s + a*b; i = i + 1;] = 1010000
- Compiler scans each basic block to derive GEN and KILL sets
Dataflow Equations

- $IN[b] = OUT[b1] \cup \ldots \cup OUT[bn]$
 - where $b1, \ldots, bn$ are predecessors of b in CFG
- $OUT[b] = (IN[b] - KILL[b]) \cup GEN[b]$
- $IN[entry] = 0000000$
- Result: system of equations
Solving Equations

- Use fixed point algorithm
- Initialize with solution of OUT[b] = 0000000
- Repeatedly apply equations
 - IN[b] = OUT[b1] U ... U OUT[bn]
 - OUT[b] = (IN[b] - KILL[b]) U GEN[b]
- Until reach fixed point
- Until equation application has no further effect
- Use a worklist to track which equation applications may have a further effect
Reaching Definitions Algorithm

for all nodes \(n \) in \(N \)
 \(\text{OUT}[n] = \text{emptyset}; \) // \(\text{OUT}[n] = \text{GEN}[n]; \)
\(\text{IN}[\text{Entry}] = \text{emptyset}; \)
\(\text{OUT}[\text{Entry}] = \text{GEN}[\text{Entry}]; \)
\(\text{Changed} = N - \{ \text{Entry} \}; \) // \(N \) = all nodes in graph

while (\(\text{Changed} \) != emptyset)
 choose a node \(n \) in \(\text{Changed} \);
 \(\text{Changed} = \text{Changed} - \{ n \}; \)

 \(\text{IN}[n] = \text{emptyset}; \)
 for all nodes \(p \) in \(\text{predecessors}(n) \)
 \(\text{IN}[n] = \text{IN}[n] \cup \text{OUT}[p]; \)

 \(\text{OUT}[n] = \text{GEN}[n] \cup (\text{IN}[n] - \text{KILL}[n]); \)

 if (\(\text{OUT}[n] \) changed)
 for all nodes \(s \) in \(\text{successors}(n) \)
 \(\text{Changed} = \text{Changed} \cup \{ s \}; \)
Questions

- Does the algorithm halt?
 - yes, because transfer function is monotonic
 - if increase IN, increase OUT
 - in limit, all bits are 1

- If bit is 0, does the corresponding definition ever reach basic block?
- If bit is 1, is does the corresponding definition always reach the basic block?
1: s = 0;
2: a = 4;
3: i = 0;
k == 0
4: b = 1;
5: b = 2;
6: s = s + a*b;
7: i = i + 1;
return s
Outline

• Reaching Definitions
• Available Expressions
• Liveness
Available Expressions

- An expression $x+y$ is available at a point p if
 - every path from the initial node to p must evaluate $x+y$ before reaching p,
 - and there are no assignments to x or y after the evaluation but before p.

- Available Expression information can be used to do global (across basic blocks) CSE

- If expression is available at use, no need to reevaluate it
Example: Available Expression

\begin{align*}
a &= b + c \\
d &= e + f \\
f &= a + c \\
g &= a + c \\
b &= a + d \\
h &= c + f \\
j &= a + b + c + d
\end{align*}
Is the Expression Available?

YES!

\[
\begin{align*}
a &= b + c \\
d &= e + f \\
f &= a + c \\
g &= a + c \\
b &= a + d \\
h &= c + f \\
j &= a + b + c + d \\
\end{align*}
\]
Is the Expression Available?

a = b + c

YES!

g = a + c

b = a + d

h = c + f

j = a + b + c + d

f = a + c

d = e + f
Is the Expression Available?

\begin{align*}
 a &= b + c \\
 d &= e + f \\
 f &= a + c \\
 g &= a + c \\
 j &= a + b + c + d \\
 b &= a + d \\
 h &= c + f
\end{align*}

NO!
Is the Expression Available?

NO!

\[
a = b + c \\
d = e + f \\
f = a + c
\]

\[
g = a + c \\
b = a + d \\
h = c + f
\]

\[
j = a + b + c + d
\]
Is the Expression Available?

\[
\begin{align*}
 a &= b + c \\
 d &= e + f \\
 f &= a + c \\
 g &= a + c \\
 b &= a + d \\
 h &= c + f \\
 j &= a + b + c + d
\end{align*}
\]

YES!
Is the Expression Available?

a = b + c

j = a + b + c + d

g = a + c

d = e + f

f = a + c

b = a + d

h = c + f

YES!
Use of Available Expressions

\[
\begin{align*}
a &= b + c \\
d &= e + f \\
f &= a + c \\
g &= a + c \\
b &= a + d \\
h &= c + f \\
j &= a + b + c + d
\end{align*}
\]
Use of Available Expressions

\[a = b + c \]
\[d = e + f \]
\[f = a + c \]

\[g = a + c \]

\[b = a + d \]
\[h = c + f \]

\[j = a + b + c + d \]
Use of Available Expressions

\[
\begin{align*}
 a &= b + c \\
 d &= e + f \\
 f &= a + c \\
 g &= a + c \\
 b &= a + d \\
 h &= c + f \\
 j &= a + b + c + d
\end{align*}
\]
Use of Available Expressions

\[a = b + c \]
\[d = e + f \]
\[f = a + c \]
\[g = f \]
\[b = a + d \]
\[h = c + f \]
\[j = a + b + c + d \]
Use of Available Expressions

\begin{align*}
a &= b + c \\
d &= e + f \\
f &= a + c \\
g &= f \\
b &= a + d \\
h &= c + f \\
\text{j} &= a + c + b + d
\end{align*}
Use of Available Expressions

\[
\begin{align*}
a &= b + c \\
d &= e + f \\
f &= a + c \\
g &= f \\
b &= a + d \\
h &= c + f \\
j &= f + b + d
\end{align*}
\]
Use of Available Expressions

\[
\begin{align*}
 a &= b + c \\
 d &= e + f \\
 f &= a + c \\
 g &= f \\
 j &= f + b + d \\
 b &= a + d \\
 h &= c + f
\end{align*}
\]
Computing Available Expressions

- Represent sets of expressions using bit vectors
- Each expression corresponds to a bit
- Run dataflow algorithm similar to reaching definitions
- Big difference
 - definition reaches a basic block if it comes from any predecessor in CFG
 - expression is available at a basic block only if it is available from all predecessors in CFG
Expressions
1: x+y
2: i<n
3: i+c
4: x==0

```
a = x+y;
x == 0
x = z;
b = x+y;
i = x+y;
c = x+y;
i = i+c;
d = x+y
```
Global CSE Transform

Expressions
1: x+y
2: i<n
3: i+c
4: x==0

must use same temp for CSE in all blocks
Expressions
1: x + y
2: i < n
3: i + c
4: x == 0

Global CSE Transform

must use same temp for CSE in all blocks
Formalizing Analysis

- Each basic block has
 - IN - set of expressions available at start of block
 - OUT - set of expressions available at end of block
 - GEN - set of expressions computed in block
 - KILL - set of expressions killed in in block
- GEN\[x = z; b = x+y\] = 1000
- KILL\[x = z; b = x+y\] = 1001
- Compiler scans each basic block to derive GEN and KILL sets
Dataflow Equations

- \(\text{IN}[b] = \text{OUT}[b_1] \cap ... \cap \text{OUT}[b_n] \)
 - where \(b_1, ..., b_n \) are predecessors of \(b \) in CFG
- \(\text{OUT}[b] = (\text{IN}[b] - \text{KILL}[b]) \cup \text{GEN}[b] \)
- \(\text{IN}[\text{entry}] = 0000 \)
- Result: system of equations
Solving Equations

- Use fixed point algorithm
- \(\text{IN[entry]} = 0000 \)
- Initialize \(\text{OUT[b]} = 1111 \)
- Repeatedly apply equations
 - \(\text{IN[b]} = \text{OUT[b1]} \cap \ldots \cap \text{OUT[bn]} \)
 - \(\text{OUT[b]} = (\text{IN[b]} - \text{KILL[b]}) \cup \text{GEN[b]} \)
- Use a worklist algorithm to reach fixed point
Available Expressions Algorithm

for all nodes n in N
 OUT[n] = E; // OUT[n] = E - KILL[n];
IN[Entry] = emptyset;
OUT[Entry] = GEN[Entry];
Changed = N - { Entry }; // N = all nodes in graph

while (Changed != emptyset)
 choose a node n in Changed;
 Changed = Changed - { n };

 IN[n] = E; // E is set of all expressions
 for all nodes p in predecessors(n)
 IN[n] = IN[n] \cap OUT[p];

 OUT[n] = GEN[n] U (IN[n] - KILL[n]);

 if (OUT[n] changed)
 for all nodes s in successors(n)
 Changed = Changed U { s };
Questions

• Does algorithm always halt?

• If expression is available in some execution, is it always marked as available in analysis?

• If expression is not available in some execution, can it be marked as available in analysis?
General Correctness

• Concept in actual program execution
 – Reaching definition: definition D, execution E at program point P
 – Available expression: expression X, execution E at program point P
• Analysis reasons about all possible executions
• For all executions E at program point P,
 – if a definition D reaches P in E
 – then D is in the set of reaching definitions at P from analysis
• Other way around
 – if D is not in the set of reaching definitions at P from analysis
 – then D never reaches P in any execution E
• For all executions E at program point P,
 – if an expression X is in set of available expressions at P from analysis
 – then X is available in E at P
• Concept of being conservative
Duality In Two Algorithms

- **Reaching definitions**
 - Confluence operation is set union
 - OUT[b] initialized to empty set

- **Available expressions**
 - Confluence operation is set intersection
 - OUT[b] initialized to set of available expressions

- **General framework for dataflow algorithms.**
- **Build parameterized dataflow analyzer once, use for all dataflow problems**
Outline

- Reaching Definitions
- Available Expressions
- Liveness
Liveness Analysis

• A variable v is live at point p if
 – v is used along some path starting at p, and
 – no definition of v along the path before the use.

• When is a variable v dead at point p?
 – No use of v on any path from p to exit node, or
 – If all paths from p redefine v before using v.
What Use is Liveness Information?

- Register allocation.
 - If a variable is dead, can reassign its register
- Dead code elimination.
 - Eliminate assignments to variables not read later.
 - But must not eliminate last assignment to variable (such as instance variable) visible outside CFG.
 - Can eliminate other dead assignments.
 - Handle by making all externally visible variables live on exit from CFG
Conceptual Idea of Analysis

- Simulate execution
- But start from exit and go backwards in CFG
- Compute liveness information from end to beginning of basic blocks
Liveness Example

- Assume a, b, c visible outside method
- So are live on exit
- Assume x, y, z, t not visible
- Represent Liveness Using Bit Vector
 - order is abcxyzt
Dead Code Elimination

- Assume a,b,c visible outside method
- So are live on exit
- Assume x,y,z,t not visible
- Represent Liveness Using Bit Vector
 - order is abcxyzt

```
a = x+y;
t = a;
c = a + x;
x == 0

b = t + z;
c = y + 1;
```
Formalizing Analysis

- Each basic block has
 - **IN** - set of variables live at start of block
 - **OUT** - set of variables live at end of block
 - **USE** - set of variables with upwards exposed uses in block
 - **DEF** - set of variables defined in block

- \(\text{USE}[x = z; x = x+1;] = \{ z \} \) (\(x \) not in USE)
- \(\text{DEF}[x = z; x = x+1; y = 1;] = \{x, y\} \)
- Compiler scans each basic block to derive USE and DEF sets
Algorithm

for all nodes \(n \) in \(N - \{ \text{Exit} \} \)
 \[\text{IN}[n] = \text{emptyset}; \]
\[\text{OUT}[\text{Exit}] = \text{emptyset}; \]
\[\text{IN}[\text{Exit}] = \text{use}[\text{Exit}]; \]
\[\text{Changed} = N - \{ \text{Exit} \}; \]

while (\(\text{Changed} \) != \text{emptyset})
 choose a node \(n \) in \(\text{Changed} \);
 \[\text{Changed} = \text{Changed} - \{ n \}; \]

\[\text{OUT}[n] = \text{emptyset}; \]
for all nodes \(s \) in \(\text{successors}(n) \)
 \[\text{OUT}[n] = \text{OUT}[n] \cup \text{IN}[p]; \]

\[\text{IN}[n] = \text{use}[n] \cup (\text{out}[n] - \text{def}[n]); \]

if (\(\text{IN}[n] \) changed)
 for all nodes \(p \) in \(\text{predecessors}(n) \)
 \[\text{Changed} = \text{Changed} \cup \{ p \}; \]
Similar to Other Dataflow Algorithms

- Backwards analysis, not forwards
- Still have transfer functions
- Still have confluence operators
- Can generalize framework to work for both forwards and backwards analyses
Comparison

Reaching Definitions

For all nodes \(n \) in \(N \):
- \(\text{OUT}[n] = \text{emptyset}; \)
- \(\text{IN}[\text{Entry}] = \text{emptyset}; \)
- \(\text{OUT}[\text{Entry}] = \text{GEN}[\text{Entry}]; \)
- \(\text{Changed} = \text{N} - \{ \text{Entry} \}; \)

While (\(\text{Changed} \neq \text{emptyset} \)):
- Choose a node \(n \) in \(\text{Changed} \);
- \(\text{Changed} = \text{Changed} - \{ n \}; \)

- \(\text{IN}[n] = \text{emptyset}; \)
- For all nodes \(p \) in \(\text{predecessors}(n) \):
 - \(\text{IN}[n] = \text{IN}[n] \cup \text{OUT}[p]; \)

- \(\text{OUT}[n] = \text{GEN}[n] \cup (\text{IN}[n] - \text{KILL}[n]); \)

If (\(\text{OUT}[n] \) changed):
- For all nodes \(s \) in \(\text{successors}(n) \):
 - \(\text{Changed} = \text{Changed} \cup \{ s \}; \)

Available Expressions

For all nodes \(n \) in \(N \):
- \(\text{OUT}[n] = \text{E}; \)
- \(\text{IN}[\text{Entry}] = \text{emptyset}; \)
- \(\text{OUT}[\text{Entry}] = \text{GEN}[\text{Entry}]; \)
- \(\text{Changed} = \text{N} - \{ \text{Entry} \}; \)

While (\(\text{Changed} \neq \text{emptyset} \)):
- Choose a node \(n \) in \(\text{Changed} \);
- \(\text{Changed} = \text{Changed} - \{ n \}; \)

- \(\text{IN}[n] = \text{E}; \)
- For all nodes \(p \) in \(\text{predecessors}(n) \):
 - \(\text{IN}[n] = \text{IN}[n] \cap \text{OUT}[p]; \)

- \(\text{OUT}[n] = \text{GEN}[n] \cup (\text{IN}[n] - \text{KILL}[n]); \)

If (\(\text{OUT}[n] \) changed):
- For all nodes \(s \) in \(\text{successors}(n) \):
 - \(\text{Changed} = \text{Changed} \cup \{ s \}; \)

Liveness

For all nodes \(n \) in \(N - \{ \text{Exit} \} \):
- \(\text{IN}[n] = \text{emptyset}; \)
- \(\text{OUT}[\text{Exit}] = \text{emptyset}; \)
- \(\text{IN}[\text{Exit}] = \text{use}[\text{Exit}]; \)
- \(\text{Changed} = \text{N} - \{ \text{Exit} \}; \)

While (\(\text{Changed} \neq \text{emptyset} \)):
- Choose a node \(n \) in \(\text{Changed} \);
- \(\text{Changed} = \text{Changed} - \{ n \}; \)

- \(\text{OUT}[n] = \text{emptyset}; \)
- For all nodes \(s \) in \(\text{successors}(n) \):
 - \(\text{OUT}[n] = \text{OUT}[n] \cup \text{IN}[p]; \)

- \(\text{IN}[n] = \text{use}[n] \cup (\text{out}[n] - \text{def}[n]); \)

If (\(\text{IN}[n] \) changed):
- For all nodes \(p \) in \(\text{predecessors}(n) \):
 - \(\text{Changed} = \text{Changed} \cup \{ p \}; \)
Comparison

Reaching Definitions

for all nodes n in N

$\text{OUT}[n] = \text{emptyset};$

$\text{IN}[\text{Entry}] = \text{emptyset};$
$\text{OUT}[\text{Entry}] = \text{GEN}[\text{Entry}];$
$\text{Changed} = N - \{ \text{Entry} \};$

while ($\text{Changed} \neq \text{emptyset}$)
 choose a node n in $\text{Changed};$
 $\text{Changed} = \text{Changed} - \{ n \};$

$\text{IN}[n] = \text{emptyset};$
for all nodes p in $\text{predecessors}(n)$
 $\text{IN}[n] = \text{IN}[n] \cup \text{OUT}[p];$

$\text{OUT}[n] = \text{GEN}[n] \cup (\text{IN}[n] - \text{KILL}[n]);$

if ($\text{OUT}[n]$ changed)
 for all nodes s in $\text{successors}(n)$
 $\text{Changed} = \text{Changed} \cup \{ s \};$

Available Expressions

for all nodes n in N

$\text{OUT}[n] = E;$

$\text{IN}[\text{Entry}] = \text{emptyset};$
$\text{OUT}[\text{Entry}] = \text{GEN}[\text{Entry}];$
$\text{Changed} = N - \{ \text{Entry} \};$

while ($\text{Changed} \neq \text{emptyset}$)
 choose a node n in $\text{Changed};$
 $\text{Changed} = \text{Changed} - \{ n \};$

$\text{IN}[n] = E;$
for all nodes p in $\text{predecessors}(n)$
 $\text{IN}[n] = \text{IN}[n] \cap \text{OUT}[p];$

$\text{OUT}[n] = \text{GEN}[n] \cup (\text{IN}[n] - \text{KILL}[n]);$

if ($\text{OUT}[n]$ changed)
 for all nodes s in $\text{successors}(n)$
 $\text{Changed} = \text{Changed} \cup \{ s \};$
<table>
<thead>
<tr>
<th>Reaching Definitions</th>
<th>Liveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>for all nodes n in N</td>
<td>for all nodes n in N</td>
</tr>
<tr>
<td>(\text{OUT}[n] = \text{emptyset};)</td>
<td>(\text{IN}[n] = \text{emptyset};)</td>
</tr>
<tr>
<td>(\text{IN}[\text{Entry}] = \text{emptyset};)</td>
<td>(\text{OUT}[\text{Exit}] = \text{emptyset};)</td>
</tr>
<tr>
<td>(\text{OUT}[\text{Entry}] = \text{GEN}[\text{Entry}];)</td>
<td>(\text{IN}[\text{Exit}] = \text{use}[\text{Exit}];)</td>
</tr>
<tr>
<td>Changed = (N - { \text{Entry} };)</td>
<td>Changed = (N - { \text{Exit} };)</td>
</tr>
<tr>
<td>while (Changed !== emptyset)</td>
<td>while (Changed !== emptyset)</td>
</tr>
<tr>
<td>choose a node n in Changed;</td>
<td>choose a node n in Changed;</td>
</tr>
<tr>
<td>Changed = Changed - { n };</td>
<td>Changed = Changed - { n };</td>
</tr>
<tr>
<td>(\text{IN}[n] = \text{emptyset};)</td>
<td>(\text{OUT}[n] = \text{emptyset};)</td>
</tr>
<tr>
<td>for all nodes p in predecessors(n)</td>
<td>for all nodes s in successors(n)</td>
</tr>
<tr>
<td>(\text{IN}[n] = \text{IN}[n] \cup \text{OUT}[p];)</td>
<td>(\text{OUT}[n] = \text{OUT}[n] \cup \text{IN}[p];)</td>
</tr>
<tr>
<td>(\text{OUT}[n] = \text{GEN}[n] \cup (\text{IN}[n] - \text{KILL}[n]);)</td>
<td>(\text{IN}[n] = \text{use}[n] \cup (\text{out}[n] - \text{def}[n]);)</td>
</tr>
<tr>
<td>if (OUT[n] changed)</td>
<td>if (IN[n] changed)</td>
</tr>
<tr>
<td>for all nodes s in successors(n)</td>
<td>for all nodes p in predecessors(n)</td>
</tr>
<tr>
<td>Changed = Changed (\cup { s };)</td>
<td>Changed = Changed (\cup { p };)</td>
</tr>
</tbody>
</table>
Analysis Information Inside Basic Blocks

• One detail:
 – Given dataflow information at IN and OUT of node
 – Also need to compute information at each statement of basic block
 – Simple propagation algorithm usually works fine
 – Can be viewed as restricted case of dataflow analysis
Pessimistic vs. Optimistic Analyses

• Available expressions is optimistic (for common sub-expression elimination)
 – Assume expressions are available at start of analysis
 – Analysis eliminates all that are not available
 – Cannot stop analysis early and use current result
• Live variables is pessimistic (for dead code elimination)
 – Assume all variables are live at start of analysis
 – Analysis finds variables that are dead
 – Can stop analysis early and use current result
• Dataflow setup same for both analyses
• Optimism/pessimism depends on intended use
Summary

• Basic Blocks and Basic Block Optimizations
 – Copy and constant propagation
 – Common sub-expression elimination
 – Dead code elimination

• Dataflow Analysis
 – Control flow graph
 – IN[b], OUT[b], transfer functions, join points

• Paired analyses and transformations
 – Reaching definitions/constant propagation
 – Available expressions/common sub-expression elimination
 – Liveness analysis/Dead code elimination

• Stacked analysis and transformations work together