Dataflow Analysis

• Compile-Time Reasoning About
• Run-Time Values of Variables or Expressions
• At Different Program Points
 – Which assignment statements produced value of variable at this point?
 – Which variables contain values that are no longer used after this program point?
 – What is the range of possible values of variable at this program point?
Program Representation

• Control Flow Graph
 – Nodes N – statements of program
 – Edges E – flow of control
 • $\text{pred}(n) = \text{set of all predecessors of } n$
 • $\text{succ}(n) = \text{set of all successors of } n$
 – Start node n_0
 – Set of final nodes N_{final}
Program Points

- One program point before each node
- One program point after each node
- Join point – point with multiple predecessors
- Split point – point with multiple successors
Basic Idea

- Information about program represented using values from algebraic structure called lattice
- Analysis produces lattice value for each program point
- Two flavors of analysis
 - Forward dataflow analysis
 - Backward dataflow analysis
Forward Dataflow Analysis

- Analysis propagates values forward through control flow graph with flow of control
 - Each node has a transfer function f
 - Input – value at program point before node
 - Output – new value at program point after node
 - Values flow from program points after predecessor nodes to program points before successor nodes
 - At join points, values are combined using a merge function
- Canonical Example: Reaching Definitions
Backward Dataflow Analysis

- Analysis propagates values backward through control flow graph against flow of control
 - Each node has a transfer function f
 - Input – value at program point after node
 - Output – new value at program point before node
 - Values flow from program points before successor nodes to program points after predecessor nodes
 - At split points, values are combined using a merge function
- Canonical Example: Live Variables
Partial Orders

• Set P

• Partial order \leq such that $\forall x, y, z \in P$
 - $x \leq x$ (reflexive)
 - $x \leq y$ and $y \leq x$ implies $x = y$ (asymmetric)
 - $x \leq y$ and $y \leq z$ implies $x \leq z$ (transitive)

• Can use partial order to define
 - Upper and lower bounds
 - Least upper bound
 - Greatest lower bound
Upper Bounds

• If $S \subseteq P$ then
 – $x \in P$ is an upper bound of S if $\forall y \in S. \ y \leq x$
 – $x \in P$ is the least upper bound of S if
 • x is an upper bound of S, and
 • $x \leq y$ for all upper bounds y of S
 – \lor - join, least upper bound, lub, supremum, sup
 • $\lor S$ is the least upper bound of S
 • $x \lor y$ is the least upper bound of $\{x, y\}$
Lower Bounds

• If $S \subseteq P$ then
 – $x \in P$ is a lower bound of S if $\forall y \in S. \ x \leq y$
 – $x \in P$ is the greatest lower bound of S if
 • x is a lower bound of S, and
 • $y \leq x$ for all lower bounds y of S
 – \wedge - meet, greatest lower bound, glb, infimum, inf
 • $\wedge S$ is the greatest lower bound of S
 • $x \wedge y$ is the greatest lower bound of $\{x,y\}$
Covering

• $x < y$ if $x \leq y$ and $x \neq y$
• x is covered by y (y covers x) if
 – $x < y$, and
 – $x \leq z < y$ implies $x = z$
• Conceptually, y covers x if there are no elements between x and y
Example

- $P = \{000, 001, 010, 011, 100, 101, 110, 111\}$ (standard boolean lattice, also called hypercube)
- $x \leq y$ if $(x \text{ bitwise and } y) = x$

Hasse Diagram

- If y covers x
 - Line from y to x
 - y above x in diagram
Lattices

• If $x \land y$ and $x \lor y$ exist for all $x, y \in P$, then P is a lattice.

• If $\land S$ and $\lor S$ exist for all $S \subseteq P$, then P is a complete lattice.

• All finite lattices are complete.
Lattices

- If $x \land y$ and $x \lor y$ exist for all $x, y \in P$, then P is a lattice.
- If $\land S$ and $\lor S$ exist for all $S \subseteq P$, then P is a complete lattice.
- All finite lattices are complete.
- Example of a lattice that is not complete
 - Integers I
 - For any $x, y \in I$, $x \lor y = \max(x, y)$, $x \land y = \min(x, y)$
 - But $\lor I$ and $\land I$ do not exist
 - $I \cup \{+\infty, -\infty\}$ is a complete lattice
Top and Bottom

- Greatest element of P (if it exists) is top
- Least element of P (if it exists) is bottom (⊥)
Connection Between \leq, \land, and \lor

• The following 3 properties are equivalent:
 - $x \leq y$
 - $x \lor y = y$
 - $x \land y = x$

• Will prove:
 - $x \leq y$ implies $x \lor y = y$ and $x \land y = x$
 - $x \lor y = y$ implies $x \leq y$
 - $x \land y = x$ implies $x \leq y$

• Then by transitivity, can obtain
 - $x \lor y = y$ implies $x \land y = x$
 - $x \land y = x$ implies $x \lor y = y$
Connecting Lemma Proofs

• Proof of $x \leq y$ implies $x \lor y = y$
 – $x \leq y$ implies y is an upper bound of \{x,y\}.
 – Any upper bound z of \{x,y\} must satisfy $y \leq z$.
 – So y is least upper bound of \{x,y\} and $x \lor y = y$

• Proof of $x \leq y$ implies $x \land y = x$
 – $x \leq y$ implies x is a lower bound of \{x,y\}.
 – Any lower bound z of \{x,y\} must satisfy $z \leq x$.
 – So x is greatest lower bound of \{x,y\} and $x \land y = x$
Connecting Lemma Proofs

• Proof of $x \lor y = y$ implies $x \leq y$
 – y is an upper bound of $\{x, y\}$ implies $x \leq y$

• Proof of $x \land y = x$ implies $x \leq y$
 – x is a lower bound of $\{x, y\}$ implies $x \leq y$
Lattices as Algebraic Structures

- Have defined \(\lor \) and \(\land \) in terms of \(\leq \)
- Will now define \(\leq \) in terms of \(\lor \) and \(\land \)
 - Start with \(\lor \) and \(\land \) as arbitrary algebraic operations that satisfy associative, commutative, idempotence, and absorption laws
 - Will define \(\leq \) using \(\lor \) and \(\land \)
 - Will show that \(\leq \) is a partial order
- Intuitive concept of \(\lor \) and \(\land \) as information combination operators (or, and)
Algebraic Properties of Lattices

Assume arbitrary operations \lor and \land such that

- $(x \lor y) \lor z = x \lor (y \lor z)$ (associativity of \lor)
- $(x \land y) \land z = x \land (y \land z)$ (associativity of \land)
- $x \lor y = y \lor x$ (commutativity of \lor)
- $x \land y = y \land x$ (commutativity of \land)
- $x \lor x = x$ (idempotence of \lor)
- $x \land x = x$ (idempotence of \land)
- $x \lor (x \land y) = x$ (absorption of \lor over \land)
- $x \land (x \lor y) = x$ (absorption of \land over \lor)
Connection Between \land and \lor

- $x \lor y = y$ if and only if $x \land y = x$

Proof of $x \lor y = y$ implies $x = x \land y$

\[
x = x \land (x \lor y) \quad \text{(by absorption)}
\]

\[
= x \land y \quad \text{(by assumption)}
\]

Proof of $x \land y = x$ implies $y = x \lor y$

\[
y = y \lor (y \land x) \quad \text{(by absorption)}
\]

\[
= y \lor (x \land y) \quad \text{(by commutativity)}
\]

\[
= y \lor x \quad \text{(by assumption)}
\]

\[
= x \lor y \quad \text{(by commutativity)}
\]
Properties of \leq

- Define $x \leq y$ if $x \lor y = y$
- Proof of transitive property. Must show that $x \lor y = y$ and $y \lor z = z$ implies $x \lor z = z$

\[
x \lor z = x \lor (y \lor z) \quad \text{(by assumption)}
\]
\[
= (x \lor y) \lor z \quad \text{(by associativity)}
\]
\[
= y \lor z \quad \text{(by assumption)}
\]
\[
= z \quad \text{(by assumption)}
\]
Properties of \leq

• Proof of asymmetry property. Must show that $x \lor y = y$ and $y \lor x = x$ implies $x = y$

 $x = y \lor x$ (by assumption)

 $= x \lor y$ (by commutativity)

 $= y$ (by assumption)

• Proof of reflexivity property. Must show that $x \lor x = x$

 $x \lor x = x$ (by idempotence)
Properties of \leq

- Induced operation \leq agrees with original definitions of \lor and \land, i.e.,
 - $x \lor y = \sup \{x, y\}$
 - $x \land y = \inf \{x, y\}$
Proof of $x \lor y = \sup \{x, y\}$

- Consider any upper bound u for x and y.
- Given $x \lor u = u$ and $y \lor u = u$, must show $x \lor y \leq u$, i.e., $(x \lor y) \lor u = u$

 $u = x \lor u$ \hspace{1cm} (by assumption)

 $= x \lor (y \lor u)$ \hspace{1cm} (by assumption)

 $= (x \lor y) \lor u$ \hspace{1cm} (by associativity)
Proof of $x \land y = \inf \{x, y\}$

- Consider any lower bound l for x and y.
- Given $x \land l = l$ and $y \land l = l$, must show $l \leq x \land y$, i.e., $(x \land y) \land l = l$

\[
\begin{align*}
l &= x \land l \quad \text{(by assumption)} \\
 &= x \land (y \land l) \quad \text{(by assumption)} \\
 &= (x \land y) \land l \quad \text{(by associativity)}
\end{align*}
\]
Chains

• A set S is a chain if $\forall x, y \in S$. $y \leq x$ or $x \leq y$
• P has no infinite chains if every chain in P is finite
• P satisfies the ascending chain condition if for all sequences $x_1 \leq x_2 \leq \ldots$ there exists n such that $x_n = x_{n+1} = \ldots$
Application to Dataflow Analysis

- Dataflow information will be lattice values
 - Transfer functions operate on lattice values
 - Solution algorithm will generate increasing sequence of values at each program point
 - Ascending chain condition will ensure termination
- Will use \lor to combine values at control-flow join points
Transfer Functions

• Transfer function $f: P \rightarrow P$ for each node in control flow graph
• f models effect of the node on the program information
Transfer Functions

Each dataflow analysis problem has a set F of transfer functions $f : P \rightarrow P$

- Identity function $i \in F$
- F must be closed under composition:
 \[\forall f, g \in F. \text{ the function } h = \lambda x. f(g(x)) \in F \]
- Each $f \in F$ must be monotone:
 \[x \leq y \text{ implies } f(x) \leq f(y) \]
- Sometimes all $f \in F$ are distributive:
 \[f(x \lor y) = f(x) \lor f(y) \]
- Distributivity implies monotonicity
Distributivity Implies Monotonicity

• Proof of distributivity implies monotonicity
• Assume \(f(x \lor y) = f(x) \lor f(y) \)
• Must show: \(x \lor y = y \) implies \(f(x) \lor f(y) = f(y) \)

\[
f(y) = f(x \lor y) \quad \text{(by assumption)}
\]
\[
= f(x) \lor f(y) \quad \text{(by distributivity)}
\]
Putting Pieces Together

• Forward Dataflow Analysis Framework
• Simulates execution of program forward with flow of control
Forward Dataflow Analysis

• Simulates execution of program forward with flow of control

• For each node n, have
 - in_n – value at program point before n
 - out_n – value at program point after n
 - f_n – transfer function for n (given in_n, computes out_n)

• Require that solution satisfy
 - $\forall n. \ out_n = f_n(in_n)$
 - $\forall n \neq n_0. \ in_n = \lor \{ \ out_m \ . \ m \ in \ pred(n) \}$
 - $in_{n0} = I$
 - Where I summarizes information at start of program
Dataflow Equations

• Compiler processes program to obtain a set of dataflow equations

 \[\text{out}_n := f_n(\text{in}_n) \]
 \[\text{in}_n := \lor \{ \text{out}_m . m \text{ in pred}(n) \} \]

• Conceptually separates analysis problem from program
Worklist Algorithm for Solving Forward Dataflow Equations

for each n do $\text{out}_n := f_n(\bot)$

$i_{n0} := I; \text{out}_{n0} := f_{n0}(I)$

worklist := $N - \{n_0\}$

while worklist $\neq \emptyset$ do

remove a node n from worklist

$i_n := \lor \{ \text{out}_m . m \text{ in pred}(n) \}$

$out_n := f_n(i_n)$

if out$_n$ changed then

worklist := worklist \cup succ(n)
Correctness Argument

• Why result satisfies dataflow equations
• Whenever process a node \(n \), set \(\text{out}_n := f_n(\text{in}_n) \)
 Algorithm ensures that \(\text{out}_n = f_n(\text{in}_n) \)
• Whenever \(\text{out}_m \) changes, put \(\text{succ}(m) \) on worklist.
 Consider any node \(n \in \text{succ}(m) \). It will eventually come off worklist and algorithm will set
 \[
 \text{in}_n := \lor \{ \text{out}_m \ . \ m \in \text{pred}(n) \}
 \]
 to ensure that \(\text{in}_n = \lor \{ \text{out}_m \ . \ m \in \text{pred}(n) \} \)
• So final solution will satisfy dataflow equations
Termination Argument

- Why does algorithm terminate?
- Sequence of values taken on by in_n or out_n is a chain. If values stop increasing, worklist empties and algorithm terminates.
- If lattice has ascending chain property, algorithm terminates
 - Algorithm terminates for finite lattices
 - For lattices without ascending chain property, use widening operator
Widening Operators

• Detect lattice values that may be part of infinitely ascending chain
• Artificially raise value to least upper bound of chain
• Example:
 – Lattice is set of all subsets of integers
 – Could be used to collect possible values taken on by variable during execution of program
 – Widening operator might raise all sets of size n or greater to TOP (likely to be useful for loops)
Reaching Definitions

- $P = \text{powerset of set of all definitions in program (all subsets of set of definitions in program)}$
- $\vee = \bigcup$ (order is \subseteq)
- $\perp = \emptyset$
- $I = \text{in}_{n_0} = \perp$
- $F = \text{all functions } f \text{ of the form } f(x) = a \cup (x-b)$
 - b is set of definitions that node kills
 - a is set of definitions that node generates
- General pattern for many transfer functions
 - $f(x) = \text{GEN} \cup (x-\text{KILL})$
Does Reaching Definitions Framework Satisfy Properties?

• \subseteq satisfies conditions for \leq
 - $x \subseteq y$ and $y \subseteq z$ implies $x \subseteq z$ (transitivity)
 - $x \subseteq y$ and $y \subseteq x$ implies $y = x$ (asymmetry)
 - $x \subseteq x$ (reflexive)

• F satisfies transfer function conditions
 - $\lambda x. \emptyset \cup (x - \emptyset) = \lambda x. x \in F$ (identity)
 - Will show $f(x \cup y) = f(x) \cup f(y)$ (distributivity)
 - $f(x) \cup f(y) = (a \cup (x - b)) \cup (a \cup (y - b))$
 - $= a \cup (x - b) \cup (y - b) = a \cup ((x \cup y) - b)$
 - $= f(x \cup y)$
Does Reaching Definitions Framework Satisfy Properties?

• What about composition?

 – Given $f_1(x) = a_1 \cup (x-b_1)$ and $f_2(x) = a_2 \cup (x-b_2)$

 – Must show $f_1(f_2(x))$ can be expressed as $a \cup (x - b)$

 $$f_1(f_2(x)) = a_1 \cup ((a_2 \cup (x-b_2)) - b_1)$$
 $$= a_1 \cup ((a_2 - b_1) \cup ((x-b_2) - b_1))$$
 $$= (a_1 \cup (a_2 - b_1)) \cup ((x-b_2) - b_1))$$
 $$= (a_1 \cup (a_2 - b_1)) \cup (x-(b_2 \cup b_1))$$

 – Let $a = (a_1 \cup (a_2 - b_1))$ and $b = b_2 \cup b_1$

 – Then $f_1(f_2(x)) = a \cup (x - b)$
General Result

All GEN/KILL transfer function frameworks satisfy

- Identity
- Distributivity
- Composition

Properties
Available Expressions

- $P =$ powerset of set of all expressions in program (all subsets of set of expressions)
- $\lor = \cap$ (order is \subseteq)
- $\bot = P$
- $I = in_{n0} = \emptyset$
- $F =$ all functions f of the form $f(x) = a \cup (x-b)$
 - b is set of expressions that node kills
 - a is set of expressions that node generates
- Another GEN/KILL analysis
Concept of Conservatism

• Reaching definitions use \cup as join
 – Optimizations must take into account all definitions that reach along ANY path

• Available expressions use \cap as join
 – Optimization requires expression to reach along ALL paths

• Optimizations must conservatively take all possible executions into account. Structure of analysis varies according to way analysis used.
Backward Dataflow Analysis

• Simulates execution of program backward against the flow of control

• For each node n, have
 – in_n – value at program point before n
 – out_n – value at program point after n
 – f_n – transfer function for n (given out_n, computes in_n)

• Require that solution satisfies
 – $\forall n. in_n = f_n(out_n)$
 – $\forall n \notin N_{final}. out_n = \lor \{ in_m. m \in \text{succ}(n) \}$
 – $\forall n \in N_{final} = out_n = O$
 – Where O summarizes information at end of program
Worklist Algorithm for Solving Backward Dataflow Equations

for each n do $in_n := f_n(\bot)$
for each $n \in N_{\text{final}}$ do $out_n := O; in_n := f_n(O)$
worklist := $N - N_{\text{final}}$
while worklist $\neq \emptyset$ do
 remove a node n from worklist
 $out_n := \lor \{ in_m . m \in \text{succ}(n) \}$
 $in_n := f_n(out_n)$
 if in_n changed then
 worklist := worklist \cup pred(n)
Live Variables

- $P = \text{powerset of set of all variables in program (all subsets of set of variables in program)}$
- $\lor = \cup$ (order is \subseteq)
- $\perp = \emptyset$
- $O = \emptyset$
- $F = \text{all functions } f \text{ of the form } f(x) = a \cup (x-b)$
 - b is set of variables that node kills
 - a is set of variables that node reads
Meaning of Dataflow Results

• Concept of program state s for control-flow graphs
 • Program point n where execution located
 (n is node that will execute next)
 • Values of variables in program
• Each execution generates a trajectory of states:
 - $s_0; s_1; \ldots; s_k$, where each $s_i \in \text{ST}$
 - s_{i+1} generated from s_i by executing basic block to
 • Update variable values
 • Obtain new program point n
Relating States to Analysis Result

- Meaning of analysis results is given by an abstraction function $\text{AF}: \text{ST} \rightarrow \text{P}$
- Correctness condition: require that for all states s
 \[\text{AF}(s) \leq \text{in}_n \]
 where n is the next statement to execute in state s
Sign Analysis Example

- Sign analysis - compute sign of each variable \(v \)
- Base Lattice: \(P = \) flat lattice on \(\{-,0,+\} \)

- Actual lattice records a value for each variable
 - Example element: \([a \rightarrow +, b \rightarrow 0, c \rightarrow -] \)
Interpretation of Lattice Values

• If value of \(v \) in lattice is:
 – BOT: no information about sign of \(v \)
 – -: variable \(v \) is negative
 – 0: variable \(v \) is 0
 – +: variable \(v \) is positive
 – TOP: \(v \) may be positive or negative

• What is abstraction function \(AF \)?
 – \(AF([v_1,\ldots,v_n]) = [\text{sign}(v_1), \ldots, \text{sign}(v_n)] \)
 – Where \(\text{sign}(v) = 0 \) if \(v = 0 \), + if \(v > 0 \), - if \(v < 0 \)
Operation ⊗ on Lattice

<table>
<thead>
<tr>
<th>⊗</th>
<th>BOT</th>
<th>-</th>
<th>0</th>
<th>+</th>
<th>TOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOT</td>
<td>BOT</td>
<td>BOT</td>
<td>0</td>
<td>BOT</td>
<td>BOT</td>
</tr>
<tr>
<td>-</td>
<td>BOT</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>TOP</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+</td>
<td>BOT</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>TOP</td>
</tr>
<tr>
<td>TOP</td>
<td>BOT</td>
<td>TOP</td>
<td>0</td>
<td>TOP</td>
<td>TOP</td>
</tr>
</tbody>
</table>
Transfer Functions

• If n of the form $v = c$
 - $f_n(x) = x[v \rightarrow +]$ if c is positive
 - $f_n(x) = x[v \rightarrow 0]$ if c is 0
 - $f_n(x) = x[v \rightarrow -]$ if c is negative

• If n of the form $v_1 = v_2 \cdot v_3$
 - $f_n(x) = x[v_1 \rightarrow x[v_2] \odot x[v_3]]$

• $I = \text{TOP}$
 (uninitialized variables may have any sign)
Example

\[
\begin{align*}
 a &= 1 \\
 b &= -1 \\
 c &= a \cdot b \\
 b &= 1 \\
 [a \rightarrow +, b \rightarrow -] \quad \rightarrow \quad [a \rightarrow +, b \rightarrow +] \\
 [a \rightarrow +, b \rightarrow \text{TOP}] \quad \rightarrow \quad [a \rightarrow +, b \rightarrow \text{TOP}, c \rightarrow \text{TOP}]
\end{align*}
\]
Imprecision In Example

Abstraction Imprecision:
[a→1] abstracted as [a→+]

Control Flow Imprecision:
[b→TOP] summarizes results of all executions. In any execution state s, AF(s)[b]≠TOP
General Sources of Imprecision

• Abstraction Imprecision
 – Concrete values (integers) abstracted as lattice values (-, 0, and +)
 – Lattice values less precise than execution values
 – Abstraction function throws away information

• Control Flow Imprecision
 – One lattice value for all possible control flow paths
 – Analysis result has a single lattice value to summarize results of multiple concrete executions
 – Join operation \lor moves up in lattice to combine values from different execution paths
 – Typically if $x \leq y$, then x is more precise than y
Why Have Imprecision

• Make analysis tractable
• Unbounded sets of values in execution
 – Typically abstracted by finite set of lattice values
• Execution may visit unbounded set of states
 – Abstracted by computing joins of different paths
Abstraction Function

- $\text{AF}(s)[v] = \text{sign of } v$
 - $\text{AF}(n, [a\rightarrow 5, b\rightarrow 0, c\rightarrow -2]) = [a\rightarrow +, b\rightarrow 0, c\rightarrow -]$

- Establishes meaning of the analysis results
 - If analysis says variable has a given sign
 - Always has that sign in actual execution

- Correctness condition:
 - $\forall v. \text{AF}(s)[v] \leq \text{in}_{n}[v]$ (n is node for s)
 - Reflects possibility of imprecision
Abstraction Function Soundness

- Will show
 \[\forall v. \ AF(s)[v] \leq \text{in}_n[v] \] (n is node for s)
 by induction on length of computation that produced s

- Base case:
 - \[\forall v. \ \text{in}_{n_0}[v] = \text{TOP} \], which implies that
 - \[\forall v. \ AF(s)[v] \leq \text{TOP} \]
Induction Step

• Assume $\forall v. AF(s)[v] \leq in_n[v]$ for computations of length k
• Prove for computations of length $k+1$
• Proof:
 - Given s (state), n (node to execute next), and in_n
 - Find p (the node that just executed), s_p (the previous state),
 and in_p
 - By induction hypothesis $\forall v. AF(s_p)[v] \leq in_p[v]$
 - Case analysis on form of p
 • If p of the form $v = c$, then
 - $s[v] = c$ and $out_p[v] = sign(c)$, so
 $AF(s)[v] = sign(c) = out_p[v] \leq in_n[v]$
 - If $x \neq v$, $s[x] = s_p[x]$ and $out_p[x] = in_p[x]$, so
 $AF(s)[x] = AF(s_p)[x] \leq in_p[x] = out_p[x] \leq in_n[x]$
 • Similar reasoning if p of the form $v_1 = v_2 \ast v_3$
Augmented Execution States

- Abstraction functions for some analyses require augmented execution states
 - Reaching definitions: states are augmented with definition that created each value
 - Available expressions: states are augmented with expression for each value
Meet Over Paths Solution

- What solution would be ideal for a forward dataflow analysis problem?
- Consider a path $p = n_0, n_1, \ldots, n_k, n$ to a node n (note that for all i $n_i \in \text{pred}(n_{i+1})$)
- The solution must take this path into account:

 $f_p(\perp) = (f_{n_k}(f_{n_{k-1}}(\ldots f_{n_1}(f_{n_0}(\perp)) \ldots)) \leq \text{in}_n$

- So the solution must have the property that

 $\lor \{f_p(\perp) . p \text{ is a path to } n\} \leq \text{in}_n$

 and ideally

 $\lor \{f_p(\perp) . p \text{ is a path to } n\} = \text{in}_n$
Soundness Proof of Analysis Algorithm

• Property to prove:
 For all paths \(p \) to \(n \), \(f_p(\bot) \leq \text{in}_n \)

• Proof is by induction on length of \(p \)
 – Uses monotonicity of transfer functions
 – Uses following lemma

• Lemma:

 Worklist algorithm produces a solution such that

 \[f_n(\text{in}_n) = \text{out}_n \]

 if \(n \in \text{pred}(m) \) then \(\text{out}_n \leq \text{in}_m \)
Proof

• Base case: p is of length 1
 – Then p = n₀ and f_p(⊥) = ⊥ = in_{n₀}

• Induction step:
 – Assume theorem for all paths of length k
 – Show for an arbitrary path p of length k+1
Induction Step Proof

- \(p = n_0, \ldots, n_k, n \)
- Must show \(f_k(f_{k-1}(\ldots f_{n_1}(f_{n_0}(\perp)) \ldots)) \leq \text{in}_n \)
 - By induction \(f_{k-1}(\ldots f_{n_1}(f_{n_0}(\perp)) \ldots)) \leq \text{in}_{n_k} \)
 - Apply \(f_k \) to both sides, by monotonicity we get \(f_k(f_{k-1}(\ldots f_{n_1}(f_{n_0}(\perp)) \ldots)) \leq f_k(\text{in}_{n_k}) \)
 - By lemma, \(f_k(\text{in}_{n_k}) = \text{out}_{n_k} \)
 - By lemma, \(\text{out}_{n_k} \leq \text{in}_n \)
 - By transitivity, \(f_k(f_{k-1}(\ldots f_{n_1}(f_{n_0}(\perp)) \ldots)) \leq \text{in}_n \)
Distributivity

- Distributivity preserves precision
- If framework is distributive, then worklist algorithm produces the meet over paths solution
 - For all n:
 \[\lor \{ f_p (\bot) \mid p \text{ is a path to } n \} = \text{in}_n \]
Lack of Distributivity Example

- Constant Calculator
- Flat Lattice on Integers

Actual lattice records a value for each variable
- Example element: $[a\rightarrow 3, b\rightarrow 2, c\rightarrow 5]$
Transfer Functions

• If \(n \) of the form \(v = c \)

 \[f_n(x) = x[v \rightarrow c] \]

• If \(n \) of the form \(v_1 = v_2 + v_3 \)

 \[f_n(x) = x[v_1 \rightarrow x[v_2] + x[v_3]] \]

• Lack of distributivity

 – Consider transfer function \(f \) for \(c = a + b \)

 \[f([a \rightarrow 3, b \rightarrow 2]) \lor f([a \rightarrow 2, b \rightarrow 3]) = [a \rightarrow \text{TOP}, b \rightarrow \text{TOP}, c \rightarrow 5] \]

 \[f([a \rightarrow 3, b \rightarrow 2] \lor [a \rightarrow 2, b \rightarrow 3]) = f([a \rightarrow \text{TOP}, b \rightarrow \text{TOP}]) = [a \rightarrow \text{TOP}, b \rightarrow \text{TOP}, c \rightarrow \text{TOP}] \]
Lack of Distributivity Anomaly

What is the meet over all paths solution?
How to Make Analysis Distributive

- Keep combinations of values on different paths

\[
\begin{align*}
\text{a} &= 2 & \text{a} &= 3 \\
\text{b} &= 3 & \text{b} &= 2 \\
\text{c} &= \text{a} + \text{b} \\
\end{align*}
\]

\[
\{[\text{a} \rightarrow 2, \text{b} \rightarrow 3]\} & & \{[\text{a} \rightarrow 3, \text{b} \rightarrow 2]\} \\
\{[\text{a} \rightarrow 2, \text{b} \rightarrow 3], [\text{a} \rightarrow 3, \text{b} \rightarrow 2]\} \\
\{[\text{a} \rightarrow 2, \text{b} \rightarrow 3, \text{c} \rightarrow 5], [\text{a} \rightarrow 3, \text{b} \rightarrow 2, \text{c} \rightarrow 5]\}
\]
Issues

- Basically simulating all combinations of values in all executions
 - Exponential blowup
 - Nontermination because of infinite ascending chains

- Nontermination solution
 - Use widening operator to eliminate blowup (can make it work at granularity of variables)
 - Loses precision in many cases
Multiple Fixed Points

- Dataflow analysis generates least fixed point
- May be multiple fixed points
- Available expressions example

\[a = x + y \]
\[i == 0 \]
\[b = x + y; \]
\[\text{nop} \]
Summary

• Formal dataflow analysis framework
 – Lattices, partial orders, least upper bound, greatest lower bound, ascending chains
 – Transfer functions, joins and splits
 – Dataflow equations and fixed point solutions

• Connection with program
 – Abstraction function \(\text{AF}: S \rightarrow P \)
 – For any state \(s \) and program point \(n \), \(\text{AF}(s) \leq \text{in}_{n} \)
 – Meet over all paths solutions, distributivity