
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.035, Spring 2016 Handout — Project Overview Tuesday, Feb 2

This is an overview of the course project and how we’ll grade it. You should not expect to un-
derstand all the technical terms, since we haven’t yet covered them in class. We’re handing it out
today to give you some idea of the kind of project we’re assigning, and to let you know the various
due dates. Additional handouts will provide the technical details of the project.

The first project (Scanner and Parser) will be done individually. For subsequent projects, the class
will be partitioned into groups of three or four students. You will be allowed to choose your own
partners as much as possible. Each group will write, in Java or another allowed language, a compiler
for a simple programming language. We expect all groups to complete all phases successfully. The
start of the class is very fast-paced: do not fall behind!

Important Project Dates (tentative)

Project Name Assigned/Due Day

Scanner and Parser assigned: Thursday, Feb 4
project public: Tuesday, Feb 16, 11:59 pm
project due: Thursday, Feb 18, 11:59 pm

Semantic Checker assigned: Thursday, Feb 18
project due: Tuesday, Mar 1, 11:59 pm

Code Generator assigned: Tuesday, Mar 1
project due: Friday, Mar 18, 11:59 pm

Data-flow Analysis assigned: Friday, Mar 18
project due: Wednesday, Apr 6, 11:59 pm

Optimizer assigned: Wednesday, Apr 6
checkpoint due: Monday, May 2, 11:59 pm
project due: Tuesday, May 10

Compiler Derby held on: Wednesday, May 11

For up-to-date deadlines, refer to the course website.

The Project Segments

Descriptions of the five parts of the compiler follow in the order that you will build them.

Scanner and Parser

A Scanner takes a Decaf source file as an input and scans it looking for tokens. A token can be an
operator (ex: ”*” or ”[”), a keyword (if or class), a literal (14 or ’c’) a string (”abc”) or an identifier.
Non-tokens (such as white spaces or comments) are discarded. Bad tokens must be reported.

1



A Parser reads a stream of tokens and checks to make sure that they conform to the language
specification. In order to pass this check, the input must have all the matching braces, semicolons,
etc. Types, variable names and function names are not verified. The output can be either a user-
generated structure or a simple parse-tree that then needs to be converted to a easier-to-process
structure.

We will provide you with a grammar of the language, which you will need to separate into a scanner
specification and a parser specification. While the grammar given should be pretty close to the
final grammar you use, you will need to make some changes. You will use a tool called ANTLR (for
JVM-based languages) to generate a scanner and a parser. The generated code will automatically
perform most error checking and reporting for you.

Semantic Checker

This part checks that various non-context free constraints, e.g., type compatibility, are observed.
We’ll supply a complete list of the checks. It also builds a symbol table in which the type and
location of each identifier is kept. The experience from past years suggests that many groups
underestimate the time required to complete the static semantic checker, so you should pay special
attention to this deadline.

It is important that you build the symbol table, since you won’t be able to build the code generator
without it. However, the completeness of the checking will not have a major impact on subsequent
stages of the project. At the end of this project the front-end of your compiler is complete and you
have designed the intermediate representation (IR) that will be used by the rest of the compiler.

Code Generation

In this assignment you will create a working compiler by generating unoptimized x86-64 assembly
code from the intermediate format you generated in the previous assignment. Because you have rel-
atively little time for this project you should concentrate on correctness and leave any optimization
hacks out, no matter how simple.

The steps of code generation are as follows: first, the rich semantics of Decaf are broken-down into
a simple intermediate representation. For example, constructs such as loops and conditionals are
expanded to code segments with simple comparison and branch instructions. Next, the intermediate
representation is matched with the Application Binary Interface, i.e., the calling convention and
register usage. Then, the corresponding x86-64 machine code is generated. Finally, the code, data
structures, and storage are laid-out in the assembly format. We will provide a description of the
object language. The object code created using this interface will then be run on a testing machine
(more on the testing machines soon).

Data Flow Analysis

This assignment phase consists of building a data-flow framework to help optimize the code gen-
erated by your compiler. For this phase, you are required to implement the data-flow framework
and a single data-flow optimization pass to test the framework. This framework will be used in the
Optimizer project to build data-flow optimization passes.

We will provide a description of the framework and the required optimization to be implemented
in a later handout.

2



Optimizer

The final project is a substantial open-ended project. In this project your team’s task is to generate
optimized code for programs so that they will be correctly executed in the shortest possible time.

There are multitude of different optimizations you can implement to improve the generated code.
You can perform data-flow optimizations such as constant propagation, common sub-expression
elimination, copy propagation, loop invariant code motion, unreachable code elimination, dead
code elimination and many others using the framework created in the previous segment. You
can also implement instruction scheduling, register allocation, peephole optimizations and even
parallelization across multiple cores of the target architecture.

In order to identify and prioritize optimizations, you will be provided with a benchmark suite
of a few simple applications. Your task is to analyze these programs, perhaps hand optimizing
these programs, to identify which optimizations will have the highest performance impact. Your
write-up needs to clearly describe the process you went through to identify the optimizations you
implemented and justify them.

This phase requires a Project Design Document and a Project Checkpoint. The group has to
provide two parts. First, a design document describing your design. This will be reviewed by the
TAs and feedback will be provided in group meetings. This document will also count towards the
project grade.

In this phase, the group has to submit a checkpoint of the implementation midway through the
allotted time. The checkpoint exists to strongly encourage you to start working on the project
early. If you get your project working at the end, the checkpoint will have little effect. However,
if your group is unable to complete the project, the checkpoint submission has a critical role in
your grade. If we determine that your group did not do a substantial amount of work before the
checkpoint, you will be severely penalized.

Derby

The last class will be the “Compiler Derby” at which your group will compete against other groups
to identify the compiler that produces the fastest code. The application used for the Derby will be
provided to the groups one day before the Derby. This is done in order for your group to debug
the compiler and get it working on this program. However, you are forbidden from adding any
application-specific hacks to make this specific program run faster.

Grading

Make sure you understand this section so you won’t be penalized for trivial oversights. The entire
project is worth 70% of your 6.035 grade. You will turn in five times for the five segments and they
are graded twice. The grade is divided between the segments in the following breakdown:

Scanner-Parser ungraded
Semantic Checker and Code Generator together 25%
Data-flow Analyzer and Optimizer together 45%

The remaining 30% comes from three quizzes, each worth 8%, and mini-quizzes at the beginning
of every lecture that worth 6% in total.

3



The phases 2 and 3 of the project (Semantic Checking and Code Generation) will be graded as
follows:

• (20%) Documentation. Your score will be based on the clarity of your documentation, and
incisiveness of your discussion on design, possible alternative designs, and issues. Some parts
of the project require additional documentation. Always read the What to Hand In section.
Overall, a few pages for the supporting documentation is fine. We will limit the length of the
documentation to 8 pages (single-column, 11 pt font).

• (80%) Implementation (objective). Points will be awarded for passing specific test cases.
Each project will include specific instructions for how your program should execute and what
the output should be. If you have good reasons for doing something differently, consult the
TAs first. Based on the testing, we will assign scores as follows:

– Public Tests: 33%

– Hidden Tests: 67%

The phases 3 and 4 of the project (Data-flow Analysis and Optimization) will be graded differently:

• (20%) Documentation, with particular attention given to your description of the optimization
selection process. Overall, we will limit the length of the supporting documentation to 8 pages
(single-column, 11 pt font).

• (50%) Implementation. As each group implements different optimizations, the only public
test is the generation of correct results for the benchmark suite and the Derby program (50%).
The hidden tests will check for overtly optimistic optimizations and incorrect handlqing of
programs (50%).

• (30%) Derby Performance. The formula for translating the running time of the program
compiled by your compiler into a grade will be announced later.

All members of a group will receive the same grade on each part of the project unless a problem
arises, in which case you should contact your TA as soon as possible.

What To Hand In

For each phase, you are required to submit your project write-up and complete sources (including
all files needed to build your project). These sources should be places in a .tar.gz archive. These
archives should be submitted on the course website.

This archive should not include compiled files. Instead, it should contain an executable file called
build.sh in the top-level directory which, when run on an Athena machine with the appropriate
lockers attached, will compile your code. These files are provided for you in the skeleton code; you
may modify them if you need to.

Projects 2 through 5 will be done in groups. Each group will be given access to a repository for
their project on Github.

4



-t|--target= <stage> <stage> is one of scan, parse, inter, or assem-
bly. Compilation should proceed to the given
stage.

-o|--output= <outname> Write output to <outname>

-O|--opt= [optimizations] Perform the (comma-separated) listed
optimizations.
all stands for all supported optimizations.
-<optimization> removes optimizations
from the list.

-d|--debug Print debugging information. If this option is
not given, there should be no output to the
screen on successful compilation.

Table 1: Compiler Command-line Arguments

Command-line Interface

We will run your compiler with the following command line interface.

./run.sh [options] filename

The command line arguments you must implement are listed in Table 1. Exactly one filename
should be provided, and it should not begin with a ’-’. The filename must not be listed after the
-O / --opt= flag, since it will be assumed to be an optimization.

The default behavior is to compile as far as the current assignment of the project and print the
output to standard output unless different output is specified with -o / --output=. All error
messages should be printed to standard error.

By default, no optimizations are performed. The list of optimization names will be provided in the
optimization assignments.

For each allowed language, we have provided code which is sufficient to implement this interface.
It also returns a list of arguments it did not understand which can be used to add features. The
TAs will not use any extra features you add for grading. However, you can tell us which, if any, to
use for the compiler derby. You may wish to provide a flag which turns on only the optimizations
you like.

Documentation / Write-up

Documentation should be included in your source archive in the doc/ folder. It should be clear,
concise and readable. Fancy formatting is not necessary; plain text is perfectly acceptable. You
are welcome to do something more extravagant, but it will not help your grade. Acceptable file
formats are pdf and plaintext.

Your documentation must include the following parts:

5



1. A brief description of how your group divided the work. This will not affect your grade; it
will be used to alert the TAs to any possible problems. (Projects 2 through 5 only.)

2. A list of any clarifications, assumptions, or additions to the problem assigned. The project
specifications are fairly broad and leave many of the decisions to you. This is an aspect of
real software engineering. If you think major clarifications are necessary, consult the TAs.

3. An overview of your design, an analysis of design alternatives you considered, and key design
decisions. Be sure to document and justify all design decisions you make. Any decision
accompanied by a convincing argument will be accepted. If you realize there are flaws or
deficiencies in your design late in the implementation process, discuss those flaws and how
you would have done things differently. Also include any changes you made to previous parts
and why they were necessary.

4. A brief description of interesting implementation issues. This should include any non-trivial
algorithms, techniques, and data structures. It should also include any insights you discovered
during this phase of the project.

5. A list of known problems with your project, and as much as you know about the cause. If
your project fails a provided test case, but you are unable to fix the problem, describe your
understanding of the problem. If you discover problems in your project in your own testing
that you are unable to fix, but are not exposed by the provided test cases, describe the
problem as specifically as possible and as much as you can about its cause. If this causes your
project to fail hidden test cases, you may still be able to receive some credit for considering
the problem. If this problem is not revealed by the hidden test cases, then you will not be
penalized for it. It is to your advantage to describe any known problems with your project;
of course, it is even better to fix them.

It is entirely up to you to determine how to test your project. The thoroughness of your testing
will be reflected in your performance on the hidden test cases.

6


