6.035 Infosession 2

Fall 2014

Project 1: Done

So far, we have 7 teams:
* Scala: 4 teams

* Java: 2 teams

* Haskell: 1 team

Team repositories have been created

Project 2: Semantic Checker

Input: Parse tree of the program produced by
the parser from Project 1

Construct internal data structures:

* Construct intermediate code representation
* Construct symbol table

Run checking procedures

* Make sure that the program is legal

e Use the generated IR and symbol table

Output: Decide whether a program is legal

Intermediate Representation
Summary

Makes the traversal and subsequent analysis/code
generation easier

Alternative ways of construction:

* Build concrete parse tree in parser
* Generate AST
* Generate high-level IR

* Build abstract syntax tree in parser
* Generate high-level IR

* Build IR directly in parser

Hierarchy for Expressions

Variant 1 Variant 2

* IntegerlLiteral e Literal

* BooleanlLiteral * IntLiteral

e Location * BoollLiteral

e MethodCallExpr * Location

e CalloutExpr * CallExpr

e ArithmeticOp * MethodCallExpr

* CalloutCallExpr

BooleanOp . BinaryOp

RelationalOp

Hierarchy for Expressions

Variant 1 Variant 2

* IntegerlLiteral e Literal

e BooleanlLiteral * IntLiteral

e Location * BoollLiteral

e MethodCallExpr * Location

e CalloutExpr * CallExpr

e ArithmeticOp * MethodCallExpr
* CalloutCallExpr

* BooleanOp 5 o

. * Binar
* RelationalOp Y-p

{
OPER_DESC operator;

Expression |hs;
Expression rhs;

}

Statements and Methods

Statements Method & Field Declarations
* AssignmentStmt e« MethodDec]
{
Location lhs; e VarDecl

Expression rhs;

}
* PlusAssingmentStmt

* ArrayVarDecl
* Type (Tylnt and TyBool)

* BreakStmt

* ContinueStmt Specialization

* [fStmt Store and load nodes: for

* WhileStmt parameters, arrays and scalars

* May specify the index of the array
* May specify storage (stack, heap)

Symbol Table Summary

e Data structure that holds meta-information about
the program’s elements

* Descriptors for

e Scalar and array variables: type and length

e Functions: name, type, symbol table for parameters,
symbol table for its local variables

* Intermediate expressions: type
* Debug information: line numbers, column numbers

* Requires efficient lookup operation

Scope

Scope: unit of program with one of more variables (or
functions) defined in it.

* Program, functions, blocks

* Nested scopes: inner and outer
void f(int p) { /* .. */ }

void main() {
int 1;
1t (true) {
int j; /*.%/
}

Visibility of Variables/Functions

Defines in which scope(s) one can access the
variable/function

In case of Decaf:

e Use after declaration: a variable or a function is
visible only after it has been declared

A variable/function defined in the outer scope is
visible in the inner scope

* Variable declaration from inner scope may shadow
the declaration from outer scope with the same
name

Use after Declaration

void fC) { /* ..

void g() {
fO;

hO ;
}

void h () { /* .

* We can call f from g, but not h

*/ }

*/ }

Shadowing

* |n Decaf, comes from nested scopes:

void main () {
int f;
f =1;
1t (true) {
bool f;
f = true; // ok

}

 Variable is visible until the end of the surrounding scope

Global and Local Scopes

void f () {

}

void main () {
int T;
f =42; // ok
fO; // not ok

Semantic Analyses

* Variable Referencing
* Type checking
* Array use

* Range checking

Variable Referencing
A[10] = 1

* Is A declared?
* Is Aan array?

* Then check for types:
* |s A an integer array
* Isindex (10) a non-negative integer

Type Checking
* Implicit type conversions are not allowed:

1 + false
1 == true

false || (2+1)

* All expressions above are illegal!

Arrays

* Array variables can be used only to get indexed location
and to get array length:

int a[l1l0];

int X;

void T {
= a; // not ok

xX; // not ok

@a; // ok

@x; // not ok

X
a
X
X
x[1] = a[l]; // not ok

e | N | B | B

[

Range Checking

* Ensure that an integer constant is within the
required range:

int X;

int a[l0];

void main () {
X = -18446744073709551617; // not ok
a[-1] = x; //not ok

Traversing Program’s IR

* \/isitor Pattern (Java)

* Pattern Matching (Scala/Haskell)

Team Tasks

 Select Parser: Select one or combine multiple

* IR desi%n: Define the common interface and the type
hierarchy

* Symbol table: Define the common interface, ensure the
lookup is efficient

* Analyses: Implement the checker functions

* Tests: more important than it looks like!

Project Result

* Report: document the design decisions and the
implementation

* Implementation:
* Make a branch in the git repository (for archival)

e Send the archive with the source code to us by the
deadline time

* We will send the instructions for submitting the project

Compiler Output

* Run as
./run.sh --target=inter program.dcf

e Returns status code O (no error), or non-zero (error)

* Also: prints semantics errors and file/line/column
where the error happened

* Debug mode: pretty print the IR of a program

Project Evaluation

* We will run the project on a set of public and
hidden tests

e We will use Athena as our execution environment

* Most of the tests will be pass/fail
¢ Compiler returns zero or non-zero status

* We will have several tests that manually check for
multiple error recovery and reports

Project Evaluation

 We will make hidden tests available after all teams
submit the project (including late days)

* We will report on the results of running the compiler
on hidden tests a few days after the submission
deadline

* Points:
* Total 9% of the grade
* 20% Documentation
* 80% Implementation (public tests 33%, hidden tests 67%)

Timeline

* Announced: Monday evening
* Public tests: Later today

* Due: Next Thursday (Oct 2 midnight)

