
6.035 Infosession 3
Spring 2016

(Part of Slides from previous years)

Code Generation at a Glance

• Translate all the instructions in the intermediate
representation to assembly language

• Handle expressions
• Allocate space

• Local variables
• Global variables
• Arrays

• Adhere to function calling conventions
• Short circuiting of conditionals
• Runtime checks

Design Intermediate Representation

• Expressive enough to be able to perform analysis
and transformation

• Concrete enough to be able to easily generate
machine code

What to use as intermediate representation?
• Same as high IR? (with semantic restrictions)
• Assembly Language?

Design #1: From AST to Assembly

• Will have a compiler immediately

• But it will make your life difficult when doing most
of the optimizations

• Ideally, want to provide framework for performing
code transformations easily

Design Intermediate Representation

• Static Single Assignment

• Infinite register machine

• Stack-based machine

Expression Evaluation Alternatives

In Place
t1 = 1
t1 *= 2
t2 = 3
t2 = t2 * 4
t1 += t2
a = t1
t1 *= t1
t1 += 1
b = t1

Temporaries
t1 = 1*2
t2 = 3*4
a = t1 + t2
t3 = a * a
b = t3 + 1

High Level
a = 1*2 + 3*4
b = a*a + 1

Code Generation at a Glance

• Translate all the instructions in the intermediate
representation to assembly language

• Allocate space
• Local variables.
• Global variables
• Arrays

• Adhere to function calling conventions
• Short circuiting of conditionals
• Runtime checks

Variables

Start from Names (Source code) and Descriptors (high IR)

Intermediate allocation
• Everything on the stack?

• Later optimize by moving to registers
• Everything in a register?

• “Spill” excess to the stack
• Other techniques...

• Final allocation (fixed registers + stack)
• Register allocation is hard! (so start simple!)

Conditionals

Must eventually become labels and jumps
if (a) { foo } else { bar }

Becomes:
cmp $0, a
jne l1

bar
jmp l2

l1:foo
l2: //…

Target: x86-64

• Stack values are 64-bit (8-byte)
• Values in decaf are 64-bit (integer) or 1-bit (boolean)
• For this phase, we are not optimizing for space
• Use 64-bits (quadword) for ints and bools.
• Use instructions that operate on 64-bit values for

stack and memory operations, e.g. mov
• Same for arithmetic operations

Registers (Linux Calling Convention)
Register Purpose Saved across calls

%rax temp register; return value No

%rbx callee-saved register Yes
%rcx used to pass 4th argument to functions No

%rdx used to pass 3rd argument to functions No

%rsp stack pointer Yes
%rbp callee-saved; base pointer Yes
%rsi used to pass 2nd argument to functions No

%rdi used to pass 1st argument to functions No

%r8 used to pass 5th argument to functions No

%r9 used to pass 6th argument to functions No

%r10-r11 temporary No
%r12-r15 callee-saved registers Yes

Assembly Instructions

• Check out the x86-64 Architecture guide.
• On course’s Resources page

• We are using AT&T assembler syntax (gcc)
• Instructions have the form:

• operator op1 op2, which is equlivalent to
op2 = op1 operator op2

• $x denotes immediate integer (base 10) value x
• %r?? is a register
• You can use names of global variables directly

Allocating Read Only Data

All Read-Only data in the
text segment

Integers
• use immediates
Strings
• use the .string macro

.section .rodata

.msg:
.string "Five: %d\n"

.section .text

.globl main
main:

enter $0, $0
mov $.msg, %rdi
mov $5, %rsi
mov $0, %rax
call printf
leave
ret

Allocating Global Variables
• Allocation: Use the assembler's

.comm directive
• Use name or
• Use PC relative addressing
• %rip is the current instruction

address
• X(%rip) will add the offset from

the current instruction location
to the space for x in the data
segment to %rip

• Creates easily relocatable
binaries

…
.section .text
.globl main

main:
enter$0, $0
mov $.msg, %rdi
mov x, %rsi
mov $0, %rax
call printf
leave
ret

.comm x, 8, 8

Allocating Global Variables
• Allocation: Use the assembler's

.comm directive
• Use name or
• Use PC relative addressing
• %rip is the current instruction

address
• X(%rip) will add the offset from

the current instruction location
to the space for x in the data
segment to %rip

• X is a constant offset
• Creates easily relocatable

binaries

…
.section .text
.globl main

main:
enter$0, $0
mov $.msg, %rdi
mov X(%rip), %rsi
mov $0, %rax
call printf
leave
ret

.comm x, 8, 8

Addressing Modes

• (%reg) is the memory location pointed to by the
value in %reg

• movq $5, -8(%rbp)

Arrays

• What code would you write for?
ex: a[4] = 5;

…
mov $5, %r10
mov $4, %r11
???…

.comm a, 8 * 10, 8

The data segment grows toward
larger addresses.

How to access an array element?

We want something like
–base + offset * type_size

AT&T Asm Syntax:
–offset(base, index, scale) =

offset + base + (index * scale)

Arrays

• What code would you write for?
ex: a[4] = 5;

…
mov $5, %r10
mov $4, %r11
mov %r10, a(, %r11, 8)

.comm a, 8 * 10, 8

Runtime Checks

• Array bounds:
• For every read and write for a[idx]:

if (idx <0 || idx >= length_a) { exit(-1); }

• Program returns
• If a function returns a value, the execution must not fall

off without returning a value (i.e., check that you always
assign a value to the return register %rax)

• Error handling: error(-2)

Procedure Abstraction

• Stack Frames
• Calling Convention

• What to do with live registers across a procedure call?
• Callee Saved (belong to the caller)
• %rsp, %rbp, %r12-15
• The caller must assume that all other registers will be used

by the callee

Generated Code

• Your code for this stage should be inefficient!
• Stack locations for all temporary values and

variables
• For an expression, load operand value(s) into

register(s) then perform operation and write to
location in stack

• Use regs %r10 and %r11 for temporaries

Design a Low-Level IR

• Don’t worry about machine portability
• flat low-level IRs.
• 2 address code: operand1 op= operand2

• 3 address code: result = operand1 op operand2

• Close to ASM language (linear list of instructions)
• binops, labels, jumps, calls, names, locations

• Make it flexible -- operands can be names or
machines locations
• First generate low-level IR with names, then a later pass

resolves names to locations

Compiler Flow

Template approach
• break/continue and short-circuiting
• Translate from AST to low IR

Then have multiple passes to “lower” IR to machine level
• resolve names to locations on stack
• activation frame sizes for stack size calculations
• pass arguments to methods for a call

Compilation

• Compile C file to assembly:
gcc –O0 -S -fverbose-asm foo.c –o foo.s

• Building generated assembly code (gcc is in thise
case a front-end for “as”):

gcc –c foo.s –o foo.o

• From object file to assembly: objdump –d foo.o

• Compile to executable: gcc foo.s –o foo

• Due: March 18th!!!

• Worth 25% of the grade

• Documentation 20%, Testing 80%

• Start early!

