
6.035 Infosession 4

Up to This Point: Compiler

• We built a compiler!

• What’s next?

Semantic
Analysis

Scanner &
Parser

Code
Generator

Source Code

Assembly Code

From Now On: Optimizing Compiler

• Optimize program: make programs
faster, smaller, more
energy efficient

Semantic
Analysis

Scanner &
Parser

Code
Generator

Source Code

Optimized
Assembly Code

Optimizations

From Now On: Optimizing Compiler

• Transformations:
• Move, remove, and add instructions
• Or basic blocks, functions, variables

• Ensure: semantics remains the same
• Task of program analysis
• Apply transformation only when it’s safe
• Both regular and irregular conditions

Optimization

• Previous Pass: Generates Control Flow Graph

• Iterate:
• Control Flow Analysis

• Data Flow Analysis

• Transform Control Flow Graph

• Previous Pass: Generates Assembly Code

Control Flow Analysis

• Construct basic blocks from Instruction-level CFG

• Find blocks that always execute before/after other blocks

• Keep track of structure of programs:

• Conditionals

• Loops

• Function calls

Data Flow Analysis

• Gathers information about values calculated at
locations of interest within a function

• Within basic block: e.g., value numbering

• Symbolic execution of the basic block

• Global: beyond basic block – how control flow
affects the sets of data

• Transfer function: OutSet = transfer(generated_set)

• Confluence Operator: InSet = confluence(previous_set)

Transformations: Peephole

• Within a single basic block:

• Sequential code only

• Finds a better sequence of operations

• Examples:

• (Local) Common subexpression elimination, constant folding

• Algebraic simplifications

• Dead code elimination

Transformations: Intraprocedural

• Beyond a single basic block

• Can use temporaries created in different basic blocks

• Can move instructions beyond basic block boundaries

• Examples:

• Global CSEE, constant folding

• Dead store elimination

• Loop optimizations

• Invariant code motion

Dataflow Analysis: Worklist Algorithm

Initialize InSet, OutSet;

Analyze the Entry Node:

Compute InSet[EntryNode], OutSet[EntryNode]

Initialize Worklist (to Entry node or its successors)

while (Worklist != Empty) {

Choose a node n in Worklist;

Worklist = Worklist - { n };

OldOutSet_n = OutSet[n]

Compute InSet[n] and OutSet[n]

• Use Use predecessor information

• Gen/Kill Sets

if (OldOutSet_n != OutSet[n])

Update worklist

}

Available Expressions

• An expression x+y is available at a point p if
• every path from the initial node to p must evaluate x+y

before reaching p,
• and there are no assignments to x or y after the

evaluation but before p.

• Available Expression information can be used to do
global (across basic blocks) CSE

• If expression is available at use, no need to
reevaluate it

• Expressions:

• z = x op y

• z = x

• x cmp y

• Each basic block has
– InSet- set of expressions available at start of block

– OutSet - set of expressions available at end of block

– GEN - set of expressions computed in the block

– KILL - set of expressions killed in the block

• Compiler scans each basic block to derive GEN and
KILL sets

Available Expressions

Dataflow Equations:

• Forward Analysis: Starts from Entry of the function

• IN[entry] = AllEmpty

• IN[b] = OUT[b1] � ... � OUT[bn]
– where b1, ..., bn are predecessors of b in CFG

• OUT[b] = (IN[b] - KILL[b]) U GEN[b]

• Result: system of equations

Available Expressions

Worklist Algorithm: Available Expressions

Initialize InSet, OutSet;

Analyze the Entry Node:

Compute InSet[EntryNode], OutSet[EntryNode]

Initialize Worklist (to Entry node or its successors)

while (Worklist != Empty) {

Choose a node n in Worklist;

Worklist = Worklist - { n };

OldOutSet_n = OutSet[n]

Compute InSet[n] and OutSet[n]

• Use Use predecessor information

• Gen/Kill Sets

if (OldOutSet_n != OutSet[n])

Update Worklist

}

InSet[n] = AllExpressions;

for all nodes p in predecessors(n)

InSet[n] = InSet[n] � OutSet[p];

OutSet[n] = GEN[n] U (InSet[n] - KILL[n]);

InSet[EntryNode] = emptyset;

OutSet[EntryNode] = GEN[Entry];

Worklist= AllNodes - { Entry };

for all nodes s in successors(n)

Worklist = Worklist <- s ;

For node n

OutSet[n] = AllExpressions;

Worklist Algorithm: Available Expressions

Initialize InSet, OutSet;

Analyze the Entry Node:

Compute InSet[EntryNode], OutSet[EntryNode]

Initialize Worklist (to Entry node or its successors)

while (Worklist != Empty) {

Choose a node n in Worklist;

Worklist = Worklist - { n };

OldOutSet_n = OutSet[n]

Compute InSet[n] and OutSet[n]

• Use Use predecessor information

• Gen/Kill Sets

if (OldOutSet_n != OutSet[n])

Update Worklist

}

InSet[n] = AllExpressions;

for all nodes p in predecessors(n)

InSet[n] = InSet[n] � OutSet[p];

OutSet[n] = GEN[n] U (InSet[n] - KILL[n]);

InSet[EntryNode] = emptyset;

OutSet[EntryNode] = GEN[Entry];

Worklist= AllNodes - { Entry };

for all nodes s in successors(n)

Worklist = Worklist <- s ;

For node n

OutSet[n] = AllExpressions;

Use of Analysis in Global CSEE

• Available Expression information can be used to do
global CSE

• If expression is available at use, no need to reevaluate it

• Create a temporary variable t

• At computation site – assign t with expression:
a = exp;
t = a

• At use site – if expression is available replace it with t

Examples

a = x+y;
x == 0

x = z;
b = x+y;

i < n

c = x+y;
i = i+c;

d = x+y

i = x+y;

Expressions
1: x+y
2: i<n
3: i+c
4: x==0

0000

1001

1000

1000

1100 1100

a = x+y;
t = a

x == 0

x = z;
b = x+y;

t = b

i < n

c = x+y;
i = i+c;

d = x+y

i = x+y;

0000

1001

1000

1000

1100 1100

Global CSE Transform

must use same temp
for CSE in all blocks

Expressions
1: x+y
2: i<n
3: i+c
4: x==0

a = x+y;
t = a

x == 0

x = z;
b = x+y;

t = b

i < n

c = t;
i = i+c;

d = t

i = t;

0000

1001

1000

1000

1100 1100

Global CSE Transform

must use same temp
for CSE in all blocks

Expressions
1: x+y
2: i<n
3: i+c
4: x==0

Warm-up

void main () {
int a, b, c, d;
a = 2; b = 3;
c = 0; d = 0;

c = a + b;
d = a + b;

}

Globals

int a, b, c, d;

void main () {
a = 2 ; b = 3;
c = 0; d = 0;

c = a + b;
d = a + b;

}

Arrays

void main() {
int a[10];
int i, x;

i = … ;
a[i] = 1;
a[i] = a[i] + 1;

}

Algebraic Transformations

void main () {
int a, b, c, d;
a = 2; b = 3;
c = 0; d = 0;

c = a + b;
d = a + 1 + b ;

}

Grading Info
• Total: 45 points

• Testing: 50%

• You implemented all required optimizations

• Produce correct output for test cases

• Derby performance: 30%

• Documentation: 20%

