	Name	
Friday, April 1		
	Email	
6.035 Spring 2016	Miniquiz #22	5 Minutes

Consider the following piece of x86-64 assembly code, where each instruction is assigned an ID:

mov -8(%rbp), %r10
add %r15, %r10
mov %r10, -16(%rbp)
mov -24(%rbp), %r11
add %r11, %r12
mul %r10, %r12
add %r11, %r12

Each memory instruction completes in 2 cycles, each arithmetic instruction completes in 1 cycle.

Consider the simple processor without the instruction pipeline. In how many cycles does the computation execute?

Consider now a superscalar processor with the instruction pipeline. Reorder the instructions below to minimize the execution time. In how many cycles does the computation execute?

Cycle \rightarrow									
1	2	3	4	5	6	7	8	9	10

(In each cell, fill in the id of the instruction that starts in the corresponding cycle)