MIT 6.035
Specifying Languages with Regular Expressions and Context-Free Grammars

Martin Rinard
Laboratory for Computer Science
Massachusetts Institute of Technology
Language Definition Problem

- How to precisely define language
- Layered structure of language definition
 - Start with a set of letters in language
 Lexical structure - identifies “words” in language (each word is a sequence of letters)
 - Syntactic structure - identifies “sentences” in language (each sentence is a sequence of words)
 - Semantics - meaning of program (specifies what result should be for each input)
- Today’s topic: lexical and syntactic structures
Specifying Formal Languages

- Huge Triumph of Computer Science
 - Beautiful Theoretical Results
 - Practical Techniques and Applications
- Two Dual Notions
 - Generative approach
 (grammar or regular expression)
 - Recognition approach (automaton)
- Lots of theorems about converting one approach automatically to another
Specifying Lexical Structure Using Regular Expressions

• Have some alphabet $\Sigma = \text{set of letters}$
• Regular expressions are built from:
 • ε - empty string
 Any letter from alphabet \sum
 • r_1r_2 - regular expression r_1 followed by r_2
 (sequence)
 • $r_1 | r_2$ - either regular expression r_1 or r_2
 (choice)
 • r^* - iterated sequence and choice $\varepsilon | r | rr | \ldots$
 • Parentheses to indicate grouping/precedence
Concept of Regular Expression

Generating a String

Rewrite regular expression until have only a sequence of letters (string) left

<table>
<thead>
<tr>
<th>General Rules</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) $r_1</td>
<td>r_2 \rightarrow r_1$</td>
</tr>
<tr>
<td>2) $r_1</td>
<td>r_2 \rightarrow r_2$</td>
</tr>
<tr>
<td>3) $r^* \rightarrow rr^*$</td>
<td>$1(0\mid 1)^.(0\mid 1)^$</td>
</tr>
<tr>
<td>4) $r^* \rightarrow \varepsilon$</td>
<td>$1.(0\mid 1)^*$</td>
</tr>
<tr>
<td></td>
<td>$1.(0\mid 1)(0\mid 1)^*$</td>
</tr>
<tr>
<td></td>
<td>$1.(0\mid 1)$</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>
Nondeterminism in Generation

- Rewriting is similar to equational reasoning
- But different rule applications may yield different final results

<table>
<thead>
<tr>
<th>Example 1</th>
<th>Example 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0</td>
<td>1</td>
</tr>
<tr>
<td>(0</td>
<td>1</td>
</tr>
<tr>
<td>1(0</td>
<td>1</td>
</tr>
<tr>
<td>1.(0</td>
<td>1)*</td>
</tr>
<tr>
<td>1.(0</td>
<td>1)(0</td>
</tr>
<tr>
<td>1.(0</td>
<td>1)</td>
</tr>
<tr>
<td>1.0</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Concept of Language Generated by Regular Expressions

- Set of all strings generated by a regular expression is language of regular expression
- In general, language may be (countably) infinite
- String in language is often called a token
Examples of Languages and Regular Expressions

• $\sum = \{ 0, 1, . \}$
 - (0|1)*.(0|1)* - Binary floating point numbers
 - (00)* - even-length all-zero strings
 - 1*(01*01*)* - strings with even number of zeros

• $\sum = \{ a,b,c, 0, 1, 2 \}$
 - (a|b|c)(a|b|c|0|1|2)* - alphanumeric identifiers
 - (0|1|2)* - trinary numbers
Alternate Abstraction
Finite-State Automata

- Alphabet Σ
- Set of states with initial and accept states
- Transitions between states, labeled with letters

$(0|1)^* \cdot (0|1)^*$

1. Start state
2. Accept state
Automaton Accepting String

Conceptually, run string through automaton

- Have current state and current letter in string
- Start with start state and first letter in string
- At each step, match current letter against a transition whose label is same as letter
- Continue until reach end of string or match fails
- If end in accept state, automaton accepts string
- Language of automaton is set of strings it accepts
Exam

Current state

1
0

Start state

Accept state

11.0

Current letter
Example

Current state

Start state

Accept state

Current letter

11.0
Example

Current state

Start state

Accept state

Current letter
Example

Current state

Start state

Accept state

Current letter

11.0
Example

Current state

Start state

Accept state

Current letter

1 1

1 0

11.0
Example

Current state

1
0

Start state

Accept state

11.0

String is accepted!

Current letter

0
Generative Versus Recognition

• Regular expressions give you a way to generate all strings in language
• Automata give you a way to recognize if a specific string is in language
 • Philosophically very different
 • Theoretically equivalent (for regular expressions and automata)
• Standard approach
 • Use regular expressions when define language
 • Translated automatically into automata for implementation
From Regular Expressions to Automata

- Construction by structural induction
- Given an arbitrary regular expression r
- Assume we can convert r to an automaton with
 - One start state
 - One accept state
Show how to convert all constructors to deliver an automaton with
- One start state
- One accept state
Basic Constructs

\(\varepsilon \) Start state

\(\varepsilon \) Accept state

\(a \in \Sigma \)
Sequence

- $r_1 r_2$
- r_1: Start state
- r_2: Accept state
Sequence

Old start state
Old accept state
Start state
Accept state

$r_1 \ r_2$
$\text{Old start state} \quad \text{Start state}$
$\text{Old accept state} \quad \text{Accept state}$
Sequence

Old start state Start state
Old accept state Accept state

ε

$r_1 r_2 \xrightarrow{\varepsilon} r_1 \xrightarrow{\varepsilon} r_2$
Sequence

- Old start state
- Old accept state
- Start state
- Accept state

Diagram:
- $r_1 r_2$ transitions to r_1 via ϵ
- r_1 transitions to r_2 via ϵ
- r_2 transitions to accept state via ϵ
Choice

- Old start state
- Old accept state
- Start state
- Accept state

\[r | r_1 \]

\[r_1 | r_2 \]
Choice

- Old start state
- Old accept state
- Start state
- Accept state

Diagram:
- Johnson
- $r_1|r_2$
- $\varepsilon
 \text{r}_1$
- $\varepsilon
 \text{r}_2$
- ε
Choice

- Old start state
- Old accept state
- Start state
- Accept state

Transition diagram:
- $r_1\mid r_2$
- $r_1\xrightarrow{\varepsilon} r_1$
- $r_2\xrightarrow{\varepsilon} r_2$
- $r_1\xrightarrow{\varepsilon} r_2$
- $r_2\xrightarrow{\varepsilon} r_1$
Kleene Star

- Old start state
- Old accept state
- Start state
- Accept state

\(r^* \)
Kleene Star

- Old start state
- Old accept state
- Start state
- Accept state

r^*

Diagram showing states and transitions related to the Kleene Star operator.
Kleene Star

- Old start state
- Old accept state
- Start state
- Accept state

Diagram:
- r*
- ε
- r
- ε
- ε

Start state

Old start state

Old accept state

Accept state
Kleene Star

- Green circle: Old start state
- Brown circle: Old accept state
- Orange circle: Accept state

Diagram:
- r^*
- ε
- r
NFA vs. DFA

- DFA
 - No ε transitions
 - At most one transition from each state for each letter

- NFA – neither restriction
Conversions

• Our regular expression to automata conversion produces an NFA
• Would like to have a DFA to make recognition algorithm simpler
• Can convert from NFA to DFA (but DFA may be exponentially larger than NFA)
NFA to DFA Construction

- DFA has a state for each subset of states in NFA
 - DFA start state corresponds to set of states reachable by following ε transitions from NFA start state
 - DFA state is an accept state if an NFA accept state is in its set of NFA states

To compute the transition for a given DFA state D and letter a
- Set S to empty set
- Find the set N of D’s NFA states
 - For all NFA states n in N
 - Compute set of states N' that the NFA may be in after matching a
 - Set S to S union N'
 - If S is nonempty, there is a transition for a from D to the DFA state that has the set S of NFA states
- Otherwise, there is no transition for a from D
NFA to DFA Example for \((a|b)^* . (a|b)^*\)
Lexical Structure in Languages

Each language typically has several categories of words. In a typical programming language:

- Keywords (if, while)
- Arithmetic Operations (+, -, *, /)
- Integer numbers (1, 2, 45, 67)
- Floating point numbers (1.0, .2, 3.337)
- Identifiers (abc, i, j, ab345)

- Typically have a lexical category for each keyword and/or each category
- Each lexical category defined by regexp
Lexical Categories Example

- IfKeyword = if
- WhileKeyword = while
- Operator = +|-|*|/
- Integer = [0-9] [0-9]*
- Float = [0-9]*. [0-9]*
- Identifier = [a-z][a-z][0-9]*)
- Note that [0-9] = (0|1|2|3|4|5|6|7|8|9)
 [a-z] = (a|b|c|...|y|z)
- Will use lexical categories in next level
Programming Language Syntax

• Regular languages suboptimal for specifying programming language syntax
• Why? Constructs with nested syntax
 • (a+(b-c))*(d-(x-(y-z)))
 • if (x < y) if (y < z) a = 5 else a = 6 else a = 7
• Regular languages lack state required to model nesting
• Canonical example: nested expressions
• No regular expression for language of parenthesized expressions
Solution – Context-Free Grammar

• Set of terminals
 \{ Op, Int, Open, Close \}
 Each terminal defined by regular expression
 Op = +|-|*|/
 Int = [0-9] [0-9]*
 Open = <
 Close = >

• Set of nonterminals
 \{ Start, Expr \}

• Set of productions
 • Single nonterminal on LHS
 \(Start \rightarrow Expr \)
 • Sequence of terminals and nonterminals on RHS
 \(Expr \rightarrow Expr \ Op \ Expr \)
 \(Expr \rightarrow Int \)
 \(Expr \rightarrow Open \ Expr \ Close \)
Production Game

have a current string
start with *Start* nonterminal
loop until no more nonterminals
 choose a nonterminal in current string
 choose a production with nonterminal in LHS
 replace nonterminal with RHS of production
substitute regular expressions with corresponding strings
generated string is in language

Note: different choices produce different strings
Sample Derivation

Op = +|-|*|/
Int = [0-9] [0-9]*
Open = <
Close = >

1) Start → Expr
2) Expr → Expr Op Expr
3) Expr → Int
4) Expr → Open Expr Close

Start
Expr
Expr Op Expr
Open Expr Close Op Expr
Open Expr Op Expr Close Op Expr
Open Int Op Expr Close Op Expr
Open Int Op Expr Close Op Int
Open Int Op Int Close Op Int
< 2 - 1 > + 1
Parse Tree

- Internal Nodes: Nonterminals
- Leaves: Terminals
- Edges:
 - From Nonterminal of LHS of production
- To Nodes from RHS of production

Captures derivation of string
Parse Tree for \(<2-1>\)+1
Ambiguity in Grammar

Grammar is ambiguous if there are multiple derivations (therefore multiple parse trees) for a single string.

Derivation and parse tree usually reflect semantics of the program.

Ambiguity in grammar often reflects ambiguity in semantics of language (which is considered undesirable).
Ambiguity Example

Two parse trees for \(2-1+1\)

Tree corresponding to \(<2-1>+1\)

```
Start
  \(\uparrow\)
Expr
  \(\uparrow\)
Expr
    \(\uparrow\)
Expr
      \(\uparrow\)
Expr
        \(\uparrow\)
Expr
          \(\uparrow\)
Expr
            \(\uparrow\)
Expr
              \(\uparrow\)
Expr
                \(\uparrow\)
Expr
                  \(\uparrow\)
Int

\(\text{Int}
  2\)
```

Tree corresponding to \(2-<1+1>\)

```
Start
  \(\downarrow\)
Expr
  \(\downarrow\)
Expr
    \(\downarrow\)
Expr
      \(\downarrow\)
Expr
        \(\downarrow\)
Expr
          \(\downarrow\)
Expr
            \(\downarrow\)
Expr
              \(\downarrow\)
Int

\(\text{Int}
  2\)
```

```
Expr
  \(\downarrow\)
Expr
    \(\downarrow\)
Expr
      \(\downarrow\)
Expr
        \(\downarrow\)
Expr
          \(\downarrow\)
Int

\(\text{Int}
  1\)
```

```
Expr
  \(\downarrow\)
Expr
    \(\downarrow\)
Expr
      \(\downarrow\)
Expr
        \(\downarrow\)
Expr
          \(\downarrow\)
Int

\(\text{Int}
  1\)
```
Eliminating Ambiguity

Solution: hack the grammar

<table>
<thead>
<tr>
<th>Original Grammar</th>
<th>Hacked Grammar</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Start} \to \text{Expr})</td>
<td>(\text{Start} \to \text{Expr})</td>
</tr>
<tr>
<td>(\text{Expr} \to \text{Expr Op Expr})</td>
<td>(\text{Expr} \to \text{Expr Op Int})</td>
</tr>
<tr>
<td>(\text{Expr} \to \text{Int})</td>
<td>(\text{Expr} \to \text{Int})</td>
</tr>
<tr>
<td>(\text{Expr} \to \text{Open Expr Close})</td>
<td>(\text{Expr} \to \text{Open Expr Close})</td>
</tr>
</tbody>
</table>

Conceptually, makes all operators associate to left
Parse Trees for Hacked Grammar

Only one parse tree for 2-1+1!

Valid parse tree

```
Start
  ↓
Expr
  ↓
Expr  Op  Int
  ↓  ↓  ↓
Expr Op Int
  ↓  ↓  ↓
Int Op Int
  ↓  ↓  ↓
Int 2 1
```

No longer valid parse tree

```
Start
  ↓
Expr
  ↓
Expr
  ↓
Int
  ↓
Int
  ↓
Int
```

```
Expr + Int
  ↓  ↓
Int 1
```
Precedence Violations

- All operators associate to left
- Violates precedence of * over +
 - $2-3*4$ associates like $<2-3>*4$
Hacking Around Precedence

<table>
<thead>
<tr>
<th>Original Grammar</th>
<th>Hacked Grammar</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Op} = +</td>
<td>-</td>
</tr>
<tr>
<td>(\text{Int} = [0-9] [0-9]*)</td>
<td>(\text{MulOp} = *</td>
</tr>
<tr>
<td>(\text{Open} = <)</td>
<td>(\text{Int} = [0-9] [0-9]*)</td>
</tr>
<tr>
<td>(\text{Close} = >)</td>
<td>(\text{Open} = <)</td>
</tr>
<tr>
<td>(\text{Start} \rightarrow \text{Expr})</td>
<td>(\text{Start} \rightarrow \text{Expr})</td>
</tr>
<tr>
<td>(\text{Expr} \rightarrow \text{Expr} \text{Op} \text{Int})</td>
<td>(\text{Expr} \rightarrow \text{Expr} \text{AddOp} \text{Term})</td>
</tr>
<tr>
<td>(\text{Expr} \rightarrow \text{Int})</td>
<td>(\text{Expr} \rightarrow \text{Term})</td>
</tr>
<tr>
<td>(\text{Expr} \rightarrow \text{Open} \text{Expr} \text{Close})</td>
<td>(\text{Term} \rightarrow \text{Term} \text{MulOp} \text{Num})</td>
</tr>
<tr>
<td></td>
<td>(\text{Term} \rightarrow \text{Num})</td>
</tr>
<tr>
<td></td>
<td>(\text{Num} \rightarrow \text{Int})</td>
</tr>
<tr>
<td></td>
<td>(\text{Num} \rightarrow \text{Open} \text{Expr} \text{Close})</td>
</tr>
</tbody>
</table>
Parse Tree Changes

Old parse tree for 2-3*4

- Start
 - Expr
 - Expr
 - Expr
 - Int 2
 - Op -
 - Int 3
 - Op *
 - Int 4

New parse tree for 2-3*4

- Start
 - Expr
 - AddOp -
 - Term
 - MulOp *
 - Num
 - Int 4
 - Num
 - Int 2
 - Int 3
General Idea

• Group Operators into Precedence Levels
 • * and / are at top level, bind strongest
 • + and - are at next level, bind next strongest

Nonterminal for each Precedence Level

• $Term$ is nonterminal for * and /
 $Expr$ is nonterminal for + and -

• Can make operators left or right associative within each level

• Generalizes for arbitrary levels of precedence
Parser

• Converts program into a parse tree
• Can be written by hand
• Or produced automatically by parser generator
 • Accepts a grammar as input
 • Produces a parser as output
• Practical problem
 • Parse tree for hacked grammar is complicated
 • Would like to start with more intuitive parse tree
Solution

• Abstract versus Concrete Syntax
 • Abstract syntax corresponds to “intuitive” way of thinking of structure of program
 • Omits details like superfluous keywords that are there to make the language unambiguous
 • Abstract syntax may be ambiguous
 • Concrete Syntax corresponds to full grammar used to parse the language
 • Parsers are often written to produce abstract syntax trees.
Abstract Syntax Trees

- Start with intuitive but ambiguous grammar
- Hack grammar to make it unambiguous
 - Concrete parse trees
 - Less intuitive
- Convert concrete parse trees to abstract syntax trees
 - Correspond to intuitive grammar for language
 - Simpler for program to manipulate
Hacked Unambiguous Grammar

AddOp = +|-
MulOp = *|/
Int [0-9] [0-9]*
Open = <
Close = >

\[\text{Start} \rightarrow \text{Expr} \]
\[\text{Expr} \rightarrow \text{Expr} \text{ AddOp } \text{ Term} \]
\[\text{Expr} \rightarrow \text{Term} \]
\[\text{Term} \rightarrow \text{Term} \text{ MulOp } \text{ Num} \]
\[\text{Term} \rightarrow \text{Num} \]
\[\text{Num} \rightarrow \text{Int} \]
\[\text{Num} \rightarrow \text{Open} \text{ Expr} \text{ Close} \]

Example

Intuitive but Ambiguous Grammar

Op = *||/+|-
Int = [0-9] [0-9]*

\[\text{Start} \rightarrow \text{Expr} \]
\[\text{Expr} \rightarrow \text{Expr} \text{ Op } \text{ Expr} \]
\[\text{Expr} \rightarrow \text{Int} \]
Concrete parse tree for $<2-3>*4$

- **Start**
 - **Expr**
 - **AddOp**
 - **Term**
 - **Term**
 - **Num**
 - **Int** 2
 - **Num**
 - **Int** 3

Abstract syntax tree for $<2-3>*4$

- **Start**
 - **Expr**
 - **Op**
 - **Expr**
 - **Int** 4
 - **Expr**
 - **Op**
 - **Expr**
 - **Int** 2
 - **Int** 3

- Uses intuitive grammar
- Eliminates superfluous terminals
 - Open
 - Close
Abstract parse tree for \(<2-3>\times 4\)

Further simplified abstract syntax tree for \(<2-3>\times 4\)
Summary

- Lexical and Syntactic Levels of Structure
 - Lexical – regular expressions and automata
 - Syntactic – grammars

Grammar ambiguities
 - Hacked grammars
 Abstract syntax trees

- Generation versus Recognition Approaches
 - Generation more convenient for specification
 - Recognition required in implementation
Handling If Then Else

\[
\begin{align*}
\text{Start} & \rightarrow \text{Stat} \\
\text{Stat} & \rightarrow \text{if Expr then Stat else Stat} \\
\text{Stat} & \rightarrow \text{if Expr then Stat} \\
\text{Stat} & \rightarrow \ldots
\end{align*}
\]
Parse Trees

- Consider Statement if e_1 then if e_2 then s_1 else s_2
Two Parse Trees

Which is correct?
Alternative Readings

• Parse Tree Number 1
 if \(e_1 \)
 if \(e_2 \) \(s_1 \)
 else \(s_2 \)
 Grammar is ambiguous

• Parse Tree Number 2
 if \(e_1 \)
 if \(e_2 \) \(s_1 \)
 else \(s_2 \)
Hacked Grammar

\[\text{Goal} \rightarrow \text{Stat} \]
\[\text{Stat} \rightarrow \text{WithElse} \]
\[\text{Stat} \rightarrow \text{LastElse} \]
\[\text{WithElse} \rightarrow \text{if Expr then WithElse else WithElse} \]
\[\text{WithElse} \rightarrow \langle \text{statements without if then or if then else} \rangle \]
\[\text{LastElse} \rightarrow \text{if Expr then Stat} \]
\[\text{LastElse} \rightarrow \text{if Expr then WithElse else LastElse} \]
Hacked Grammar

• Basic Idea: control carefully where an if without an else can occur
 • Either at top level of statement
 • Or as very last in a sequence of if then else if then ... statements
Grammar Vocabulary

- Leftmost derivation
 - Always expands leftmost remaining nonterminal
 - Similarly for rightmost derivation
- Sentential form
 - Partially or fully derived string from a step in valid derivation
- $0 + \text{Expr Op Expr}$
- $0 + \text{Expr} - 2$
Defining a Language

- Grammar
 - Generative approach
 - All strings that grammar generates (How many are there for grammar in previous example?)
- Automaton
 - Recognition approach
 - All strings that automaton accepts
- Different flavors of grammars and automata
- In general, grammars and automata correspond
Regular Languages

- Automaton Characterization
 - \((S,A,F,s_0,s_F)\)
 - Finite set of states \(S\)
 - Finite Alphabet \(A\)
 - Transition function \(F : S \times A \rightarrow S\)
 - Start state \(s_0\)
 - Final states \(s_F\)
- Language is set of strings accepted by Automaton
Regular Languages

- Regular Grammar Characterization
 - \((T, NT, S, P)\)
 - Finite set of Terminals \(T\)
 - Finite set of Nonterminals \(NT\)
 - Start Nonterminal \(S\) (goal symbol, start symbol)
 - Finite set of Productions \(P: NT \rightarrow T U NT U T\)
 - Language is set of strings generated by grammar
<table>
<thead>
<tr>
<th>Grammar</th>
<th>Automaton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular Grammar</td>
<td>Finite-State Automaton</td>
</tr>
<tr>
<td>Context-Free Grammar</td>
<td>Push-Down Automaton</td>
</tr>
<tr>
<td>Context-Sensitive Grammar</td>
<td>Turing Machine</td>
</tr>
</tbody>
</table>
Context-Free Grammars

- Grammar Characterization
 - \((T, NT, S, P)\)
 - Finite set of Terminals \(T\)
 - Finite set of Nonterminals \(NT\)
 - Start Nonterminal \(S\) (goal symbol, start symbol)
 - Finite set of Productions \(P: NT \rightarrow (T / NT)^*\)
 - RHS of production can have any sequence of terminals or nonterminals
Push-Down Automata

• DFA Plus a Stack
 • \((S, A, V, F, s_0, s_F)\)
 • Finite set of states \(S\)
 Finite Input Alphabet \(A\), Stack Alphabet \(V\)
 • Transition relation \(F : S \times (A \cup \{\varepsilon\}) \times V \rightarrow S \times V^*\)
 Start state \(s_0\)
 • Final states \(s_F\)
• Each configuration consists of a state, a stack, and remaining input string
CFG Versus PDA

- CFGs and PDAs are of equivalent power
- Grammar Implementation Mechanism:
 - Translate CFG to PDA, then use PDA to parse input string
 - Foundation for bottom-up parser generators
Context-Sensitive Grammars and Turing Machines

• Context-Sensitive Grammars Allow Productions to Use Context
 • \(P: (T.NT)^+ \rightarrow (T.NT)^* \)

• Turing Machines Have
 • Finite State Control
 • Two-Way Tape Instead of A Stack