Lecture 9: Introduction to Program Analysis and Optimization
Outline

- Introduction
- Basic Blocks
- Common Subexpression Elimination
- Copy Propagation
- Dead Code Elimination
- Algebraic Simplification
- Summary
Program Analysis

- Compile-time reasoning about run-time behavior of program
 - Can discover things that are always true:
 - “x is always 1 in the statement y = x + z”
 - “the pointer p always points into array a”
 - “the statement return 5 can never execute”
 - Can infer things that are likely to be true:
 - “the reference r usually refers to an object of class C”
 - “the statement a = b + c appears to execute more frequently than the statement x = y + z”
 - Distinction between data and control-flow properties
Transformations

• Use analysis results to transform program
• Overall goal: improve some aspect of program
• Traditional goals:
 - Reduce number of executed instructions
 - Reduce overall code size
• Other goals emerge as space becomes more complex
 - Reduce number of cycles
 • Use vector or DSP instructions
 • Improve instruction or data cache hit rate
 - Reduce power consumption
 - Reduce memory usage
Outline

• Introduction
• Basic Blocks
• Common Subexpression Elimination
• Copy Propagation
• Dead Code Elimination
• Algebraic Simplification
• Summary
Control Flow Graph

- **Nodes Represent Computation**
 - Each Node is a Basic Block
 - Basic Block is a Sequence of Instructions with
 - No Branches Out Of Middle of Basic Block
 - No Branches Into Middle of Basic Block
 - Basic Blocks should be maximal
 - Execution of basic block starts with first instruction
 - Includes all instructions in basic block
- **Edges Represent Control Flow**
Control Flow Graph

```plaintext
into add(n, k) {
  s = 0; a = 4; i = 0;
  if (k == 0)
    b = 1;
  else
    b = 2;
  while (i < n) {
    s = s + a*b;
    i = i + 1;
  }
  return s;
}
```
Basic Block Construction

• Start with instruction control-flow graph
• Visit all edges in graph
 - Merge adjacent nodes if
 - Only one edge from first node
 - Only one edge into second node

\[
s = 0; \\
a = 4;
\]

\[
s = 0; \\
a = 4;
\]
\[s = 0; \]
\[a = 4; \]
\[i = 0; \]
\[k = 0 \]
\[b = 2; \]
\[b = 1; \]

\[i < n \]
\[s = s + a \cdot b; \]
\[i = i + 1; \]

\[\text{return } s; \]
s = 0;

a = 4;

i = 0;

k == 0

b = 2;

b = 1;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;
a = 4;
i = 0;
```plaintext
s = 0;
a = 4;
i = 0;
k = 0
b = 2;
b = 1;
i < n
s = s + a*b;
i = i + 1;
return s;
s = 0;
a = 4;
i = 0;
k = 0
```
s = 0;
a = 4;
i = 0;
k == 0
b = 2;
b = 1;
i < n
s = s + a*b;
i = i + 1;
return s;

s = 0;
a = 4;
i = 0;
k == 0
b = 2;
s = 0;

a = 4;

i = 0;

k == 0

b = 2;

b = 1;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;

a = 4;

i = 0;

k == 0

b = 2;

i < n

return s;
s = 0;
a = 4;
i = 0;
k == 0
b = 2;
b = 1;
i < n
s = s + a * b;
i = i + 1;
return s;

s = 0;
a = 4;
i = 0;
k == 0
b = 2;
i < n
s = s + a * b;
```plaintext
s = 0;
a = 4;
i = 0;
k == 0

b = 2;
b = 1;
i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;
a = 4;
i = 0;
k == 0

b = 2;
i < n

s = s + a*b;
i = i + 1;
```

Saman Amarasinghe 15

6.035 ©MIT Fall 2006
\begin{align*}
\text{s} &= 0; \\
\text{a} &= 4; \\
\text{i} &= 0; \\
\text{k} &= 0 \\
\text{b} &= 2; \\
\text{b} &= 1; \\
\text{i} &< \text{n} \\
\text{s} &= \text{s} + \text{a} \times \text{b}; \\
\text{i} &= \text{i} + 1; \\
\text{return s};
\end{align*}
s = 0;
a = 4;
i = 0;
k == 0

b = 2;
b = 1;
i < n
s = s + a*b;
i = i + 1;

return s;

s = 0;
a = 4;
i = 0;
k == 0

b = 2;
i < n
s = s + a*b;
i = i + 1;
return s;
s = 0;
a = 4;
i = 0;
k = 0

i < n

s = s + a*b;
i = i + 1;

b = 2;

b = 1;

return s;

s = 0;
a = 4;
i = 0;
k = 0

b = 2;

b = 1;

s = s + a*b;
i = i + 1;

return s;
s = 0;

a = 4;

i = 0;

k == 0

b = 2;

b = 1;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;

a = 4;

i = 0;

k == 0

b = 2;

b = 1;

i < n

s = s + a*b;

i = i + 1;

return s;
s = 0;
a = 4;
i = 0;
k == 0

b = 2;
b = 1;
i < n

s = s + a*b;
i = i + 1;
return s;

s = 0;
a = 4;
i = 0;
k == 0

b = 2;
b = 1;
i < n

s = s + a*b;
i = i + 1;
return s;
Program Points, Split and Join Points

- One program point before and after each statement in program
- Split point has multiple successors – conditional branch statements only split points
- Merge point has multiple predecessors
- Each basic block
 - Either starts with a merge point or its predecessor ends with a split point
 - Either ends with a split point or its successor starts with a merge point
Basic Block Optimizations

• Common Subexpression Elimination
 - \(a = (x+y) + z; \ b = x+y; \)
 - \(t = x+y; \ a = t+z; \ b = t; \)

• Constant Propagation
 - \(x = 5; \ b = x+y; \)
 - \(x = 5; \ b = 5+y; \)

• Algebraic Identities
 - \(a = x*1; \)
 - \(a = x; \)

• Copy Propagation
 - \(a = x+y; \ b = a; \ c = b+z; \)
 - \(a = x+y; \ b = a; \ c = a+z; \)

• Dead Code Elimination
 - \(a = x+y; \ b = a; \ b = a+z; \)
 - \(a = x+y; \ b = a+z \)

• Strength Reduction
 - \(t = i*4; \)
 - \(t = i<<2; \)
Basic Block Analysis Approach

• Assume normalized basic block - all statements are of the form
 - var = var op var (where op is a binary operator)
 - var = op var (where op is a unary operator)
 - var = var

• Simulate a symbolic execution of basic block
 - Reason about values of variables (or other aspects of computation)
 - Derive property of interest
Two Kinds of Variables

• Temporaries Introduced By Compiler
 - Transfer values only within basic block
 - Introduced as part of instruction flattening
 - Introduced by optimizations/transformations
 - Typically assigned to only once

• Program Variables
 - Declared in original program
 - May be assigned to multiple times
 - May transfer values between basic blocks
Outline

- Introduction
- Basic Blocks
 - Common Subexpression Elimination
 - Copy Propagation
 - Dead Code Elimination
 - Algebraic Simplification
- Summary
Value Numbering

- Reason about values of variables and expressions in the program
 - Simulate execution of basic block
 - Assign virtual value to each variable and expression

- Discovered property: which variables and expressions have the same value

- Standard\textsubscript{use}:
 - Common subexpression elimination
 - Typically combined with transformation that
 - Saves computed values in temporaries
 - Replaces expressions with temporaries when value of expression previously computed
Original Basic
Block
\[a = x + y \]
\[b = a + z \]
\[b = b + y \]
\[c = a + z \]

New Basic
Block
\[a = x + y \]
\[t1 = a \]
\[b = a + z \]
\[t2 = b \]
\[b = b + y \]
\[t3 = b \]
\[c = t2 \]

Var to Val
\[x \rightarrow v1 \]
\[y \rightarrow v2 \]
\[a \rightarrow v3 \]
\[z \rightarrow v4 \]
\[b \rightarrow v6 \]
\[c \rightarrow v5 \]

Exp to Val
\[v1 + v2 \rightarrow v3 \]
\[v3 + v4 \rightarrow v5 \]
\[v5 + v2 \rightarrow v6 \]

Exp to Tmp
\[v1 + v2 \rightarrow t1 \]
\[v3 + v4 \rightarrow t2 \]
\[v5 + v2 \rightarrow t6 \]
Value Numbering Summary

- Forward symbolic execution of basic block
- Each new value assigned to temporary
 - \(a = x + y \); becomes \(a = x + y; t = a \);
 Temporary preserves value for use later in program even if original variable rewritten
 - \(a = x + y; a = a + z; b = x + y \) becomes
 \(a = x + y; t = a; a = a + z; b = t \);

- Maps
 - Var to Val - specifies symbolic value for each variable
 - Exp to Val - specifies value of each evaluated expression
 - Exp to Tmp - specifies tmp that holds value of each evaluated expression
Map Usage

• Var to Val
 - Used to compute symbolic value of y and z when processing statement of form \(x = y + z \)

• Exp to Tmp
 - Used to determine which tmp to use if \(\text{value}(y) + \text{value}(z) \) previously computed when processing statement of form \(x = y + z \)

• Exp to Val
 - Used to update Var to Val when
 • processing statement of the form \(x = y + z \), and
 • \(\text{value}(y) + \text{value}(z) \) previously computed
Interesting Properties

• Finds common subexpressions even if they use different variables in expressions
 - $y=a+b; \quad x=b; \quad z=a+x$ becomes
 - $y=a+b; \quad t=y; \quad x=b; \quad z=t$
 - Why? Because computes with symbolic values

• Finds common subexpressions even if variable that originally held the value was overwritten
 - $y=a+b; \quad y=1; \quad z=a+b$ becomes
 - $y=a+b; \quad t=y; \quad y=1; \quad z=t$
 - Why? Because saves values away in temporaries
One More Interesting Property

- Flattening and CSE combine to capture partial and arbitrarily complex common subexpressions

\[w = (a + b) + c; \quad y = (a + x) + c; \quad z = a + b; \]

- After flattening:

\[t_1 = a + b; \quad w = t_1 + c; \quad x = b; \quad t_2 = a + x; \quad y = t_2 + c; \quad z = a + b; \]

- CSE algorithm notices that

 - \(t_1 + c \) and \(t_2 + c \) compute same value
 - In the statement \(z = a + b \), \(a + b \) has already been computed so generated code can reuse the result

\[t_1 = a + b; \quad w = t_1 + c; \quad t_3 = w; \quad x = b; \quad t_2 = t_1; \quad y = t_3; \quad z = t_1; \]
Problems I

- Algorithm has a temporary for each new value
 - \(a=x+y; \ t1=a; \)
- Introduces
 - lots of temporaries
 - lots of copy statements to temporaries
- In many cases, temporaries and copy statements are unnecessary
- So we eliminate them with copy propagation and dead code elimination
Problems II

• Expressions have to be identical
 - $a = x + y + z; \ b = y + z + x; \ c = x^2 + y + 2z - (x + z)$

• We use canonicalization

• We use algebraic simplification
Copy Propagation

• Once again, simulate execution of program
• If can, use original variable instead of temporary
 - \(a=x+y; \ b=x+y; \)
 - After CSE becomes \(a=x+y; \ t=a; \ b=t; \)
 - After CP becomes \(a=x+y; \ t=a; \ b=a; \)
 - After DCE becomes \(a=x+y; \ b=a; \)

• Key idea:
 - determine when original variable is NOT overwritten between its assignment statement and the use of the computed value
 - If not overwritten, use original variable
Outline

• Introduction
• Basic Blocks
• Common Subexpression Elimination
• Copy Propagation
• Dead Code Elimination
• Algebraic Simplification
• Summary
Copy Propagation Maps

- Maintain two maps
 - tmp to var: tells which variable to use instead of a given temporary variable
 - var to set: inverse of tmp to var. tells which temps are mapped to a given variable by tmp to var
Copy Propagation Example

• Original
 a = x+y
 b = a+z
 c = x+y
 a = b

• After CSE
 a = x+y
 t1 = a
 b = a+z
 t2 = b
 c = t1
 a = b

• After CSE and Copy Propagation
 a = x+y
 t1 = a
 b = a+z
 t2 = b
 c = a
 a = b
Copy Propagation Example

Basic Block After CSE

\[
a = x+y \\
t1 = a
\]

Basic Block After CSE and Copy Prop

\[
a = x+y \\
t1 = a
\]

tmp to var

\[
t1 \rightarrow a
\]

var to set

\[
a \rightarrow \{t1\}
Copy Propagation Example

<table>
<thead>
<tr>
<th>Basic Block After CSE</th>
<th>Basic Block After CSE and Copy Prop</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a = x + y)</td>
<td>(a = x + y)</td>
</tr>
<tr>
<td>(t1 = a)</td>
<td>(t1 = a)</td>
</tr>
<tr>
<td>(b = a + z)</td>
<td>(b = a + z)</td>
</tr>
<tr>
<td>(t2 = b)</td>
<td>(t2 = b)</td>
</tr>
</tbody>
</table>

tmp to var
- \(t1 \rightarrow a\)
- \(t2 \rightarrow b\)

var to set
- \(a \rightarrow \{t1\}\)
- \(b \rightarrow \{t2\}\)
Copy Propagation Example

Basic Block After CSE

\[
\begin{align*}
a &= x+y \\
t1 &= a \\
b &= a+z \\
t2 &= b \\
c &= t1
\end{align*}
\]

tmp to var

\[
\begin{align*}
t1 &\rightarrow a \\
t2 &\rightarrow b
\end{align*}
\]

Basic Block After CSE and Copy Prop

\[
\begin{align*}
a &= x+y \\
t1 &= a \\
b &= a+z \\
t2 &= b
\end{align*}
\]

var to set

\[
\begin{align*}
a &\rightarrow \{t1\} \\
b &\rightarrow \{t2\}
\end{align*}
\]
Copy Propagation Example

Basic Block
After CSE

- \(a = x+y \)
- \(t1 = a \)
- \(b = a+z \)
- \(t2 = b \)
- \(c = t1 \)

tmp to var

- \(t1 \rightarrow a \)
- \(t2 \rightarrow b \)

Basic Block After CSE and Copy Prop

- \(a = x+y \)
- \(t1 = a \)
- \(b = a+z \)
- \(t2 = b \)
- \(c = a \)

var to set

- \(a \rightarrow \{t1\} \)
- \(b \rightarrow \{t2\} \)
Copy Propagation Example

<table>
<thead>
<tr>
<th>Basic Block After CSE</th>
<th>Basic Block After CSE and Copy Prop</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a = x + y)</td>
<td>(a = x + y)</td>
</tr>
<tr>
<td>(t1 = a)</td>
<td>(t1 = a)</td>
</tr>
<tr>
<td>(b = a + z)</td>
<td>(b = a + z)</td>
</tr>
<tr>
<td>(t2 = b)</td>
<td>(t2 = b)</td>
</tr>
<tr>
<td>(c = t1)</td>
<td>(c = a)</td>
</tr>
<tr>
<td>(a = b)</td>
<td>(a = b)</td>
</tr>
<tr>
<td>tmp to var</td>
<td>var to set</td>
</tr>
<tr>
<td>(t1 \rightarrow a)</td>
<td>(a \rightarrow {t1})</td>
</tr>
<tr>
<td>(t2 \rightarrow b)</td>
<td>(b \rightarrow {t2})</td>
</tr>
</tbody>
</table>
Copy Propagation Example

Basic Block After CSE

\[
\begin{align*}
 a &= x+y \\
 t1 &= a \\
 b &= a+z \\
 t2 &= b \\
 c &= t1 \\
 a &= b \\
\end{align*}
\]

tmp to var

\[
\begin{align*}
 t1 &\rightarrow t1 \\
 t2 &\rightarrow b \\
\end{align*}
\]

Basic Block After CSE and Copy Prop

\[
\begin{align*}
 a &= x+y \\
 t1 &= a \\
 b &= a+z \\
 t2 &= b \\
 c &= a \\
 a &= b \\
\end{align*}
\]

var to set

\[
\begin{align*}
 a &\rightarrow \{\} \\
 b &\rightarrow \{t2\} \\
\end{align*}
\]
Outline

• Introduction
• Basic Blocks
• Common Subexpression Elimination
• Copy Propagation
• Dead Code Elimination
• Algebraic Simplification
• Summary
Dead Code Elimination

• Copy propagation keeps all temps around
• May be temps that are never read
• Dead Code Elimination removes them

Basic Block After CSE and CP

\[
\begin{align*}
a &= x+y \\
t1 &= a \\
b &= a+z \\
t2 &= b \\
c &= a \\
a &= b
\end{align*}
\]

Basic Block After CSE, CP and DCE

\[
\begin{align*}
a &= x+y \\
b &= a+z \\
c &= a \\
a &= b
\end{align*}
\]
Dead Code Elimination

• Basic Idea

 - Process Code In Reverse Execution Order

 - Maintain a set of variables that are needed later in computation

 - If encounter an assignment to a temporary that is not needed, remove assignment
Basic Block After CSE and Copy Prop

\[
\begin{align*}
 a &= x+y \\
 t1 &= a \\
 b &= a+z \\
 t2 &= b \\
 c &= a \\
 \rightarrow a &= b \\
\end{align*}
\]

Needed Set

\{b\}
Basic Block After CSE and Copy Prop

\[
\begin{align*}
 &a = x + y \\
 &t1 = a \\
 &b = a + z \\
 &t2 = b \\
 &c = a \\
 &a = b
\end{align*}
\]

Needed Set
\{a, b\}
Basic Block After CSE and Copy Prop

\[
\begin{align*}
& a = x+y \\
& t1 = a \\
& b = a+z \\
& t2 = b \\
& c = a \\
& a = b
\end{align*}
\]

Needed Set
\{a, b\}
Basic Block After CSE and Copy Prop

\[
\begin{align*}
 a &= x + y \\
 t1 &= a \\
 b &= a + z \\
 \rightarrow \hspace{2em}
 c &= a \\
 a &= b
\end{align*}
\]

Needed Set

{\{a, b\}}
Basic Block After CSE and Copy Prop

\[
\begin{align*}
a &= x+y \\
t1 &= a \\
\implies b &= a+z \\
c &= a \\
a &= b
\end{align*}
\]

Needed Set
{\(a, b, z\)}
Basic Block After CSE and Copy Prop

\[
\begin{align*}
 a &= x + y \\
 t1 &= a \\
 b &= a + z \\
 c &= a \\
 a &= b
\end{align*}
\]

Needed Set
\[\{a, b, z\}\]
Basic Block After CSE and Copy Prop

\[
a = x + y \\
\rightarrow \\
b = a + z \\
c = a \\
a = b
\]

Needed Set
\[
\{a, b, z\}
\]
Basic Block After, CSE Copy Propagation, and Dead Code Elimination

\[a = x + y \]
\[b = a + z \]
\[c = a \]
\[a = b \]

Needed Set
\[\{a, b, z\} \]
Basic Block After, CSE Copy Propagation, and Dead Code Elimination

\[a = x + y\]

\[b = a + z\]

\[c = a\]

\[a = b\]

Needed Set

\[\{a, b, z\}\]
Outline

- Introduction
- Basic Blocks
- Common Subexpression Elimination
- Copy Propagation
- Dead Code Elimination
- **Algebraic Simplification**
- Summary
Algebraic Simplification

• Apply our knowledge from algebra, number theory etc. to simplify expressions
Algebraic Simplification

• Apply our knowledge from algebra, number theory etc. to simplify expressions

• Example
 - \(a + 0 \Rightarrow a\)
 - \(a \times 1 \Rightarrow a\)
 - \(a / 1 \Rightarrow a\)
 - \(a \times 0 \Rightarrow 0\)
 - \(0 - a \Rightarrow -a\)
 - \(a + (-b) \Rightarrow a - b\)
 - \((-a) \Rightarrow a\)
Algebraic Simplification

• Apply our knowledge from algebra, number theory etc. to simplify expressions

• Example
 - \(a \land \text{true}\) \(\Rightarrow\) \(a\)
 - \(a \land \text{false}\) \(\Rightarrow\) \(\text{false}\)
 - \(a \lor \text{true}\) \(\Rightarrow\) \(\text{true}\)
 - \(a \lor \text{false}\) \(\Rightarrow\) \(a\)
Algebraic Simplification

• Apply our knowledge from algebra, number theory etc. to simplify expressions

• Example
 - $a^2 \Rightarrow a*a$
 - $a*2 \Rightarrow a + a$
 - $a*8 \Rightarrow a << 3$
Opportunities for Algebraic Simplification

• In the code
 - Programmers are lazy to simplify expressions
 - Programs are more readable with full expressions

• After compiler expansion
 - Example: Array read A[8][12] will get expanded to
 - *(Abase + 4*(12 + 8*256)) which can be simplified

• After other optimizations
Usefulness of Algebraic Simplification

- Reduces the number of instructions
- Uses less expensive instructions
- Enable other optimizations
Implementation

• Not a data-flow optimization!
• Find candidates that matches the simplification rules and simplify the expression trees
 - Candidates may not be obvious
Implementation

• Not a data-flow optimization!
• Find candidates that matches the simplification rules and simplify the expression trees

- Candidates may not be obvious
 - Example
 \[
 a + b - a
 \]
 \[
 \begin{array}{c}
 + \\
 \downarrow \\
 a
 \end{array}
 \begin{array}{c}
 - \\
 \downarrow \\
 a
 \end{array}
 \begin{array}{c}
 a
 \end{array}
 \begin{array}{c}
 a
 \end{array}
 \begin{array}{c}
 b
 \end{array}
 \]
Use knowledge about operators

- **Commutative operators**
 - \(a \text{ op } b = b \text{ op } a \)

- **Associative operators**
 - \((a \text{ op } b) \text{ op } c = b \text{ op } (a \text{ op } c)\)
Canonical Format

• Put expression trees into a canonical format
 - Sum of multiplicands
 - Variables/terms in a canonical order
 - Example
 \[(a+3)*(a+8)*4 \Rightarrow 4*a*a+44*a+96\]
 - Section 12.3.1 of whale book talks about this
Effects on the Numerical Stability

- Some algebraic simplifications may produce incorrect results
Effects on the Numerical Stability

• Some algebraic simplifications may produce incorrect results
• Example
 - \((a / b) \times 0 + c\)
Effects on the Numerical Stability

• Some algebraic simplifications may produce incorrect results

• Example
 - \((a / b) * 0 + c\)
 - we can simplify this to \(c\)
Effects on the Numerical Stability

- Some algebraic simplifications may produce incorrect results
- Example
 - \((a / b) \times 0 + c\)
 - we can simplify this to \(c\)
 - But what about when \(b = 0\)
 should be an exception, but we’ll get a result!
Outline

- Introduction
- Basic Blocks
- Common Subexpression Elimination
- Copy Propagation
- Dead Code Elimination
- Algebraic Simplification
- Summary
Interesting Properties

• Analysis and Transformation Algorithms Symbolically Simulate Execution of Program
 - CSE and Copy Propagation go forward
 - Dead Code Elimination goes backwards

• Transformations stacked
 - Group of basic transformations work together
 - Often, one transformation creates inefficient code that is cleaned up by following transformations
 - Transformations can be useful even if original code may not benefit from transformation
Other Basic Block Transformations

• Constant Propagation
• Strength Reduction
 - \(a << 2 = a \times 4 \); \(a + a + a = 3 \times a \);
• Do these in unified transformation framework, not in earlier or later phases
Summary

- Basic block analyses and transformations
- Symbolically simulate execution of program
 - Forward (CSE, copy prop, constant prop)
 - Backward (Dead code elimination)
- Stacked groups of analyses and transformations that work together
 - CSE introduces excess temporaries and copy statements
 - Copy propagation often eliminates need to keep temporary variables around
 - Dead code elimination removes useless code
- Similar in spirit to many analyses and transformations that operate across basic blocks