Lecture 10: Introduction to Dataflow Analysis
Value Numbering Summary

• Forward symbolic execution of basic block
• Maps
 – Var2Val – symbolic value for each variable
 – Exp2Val – value of each evaluated expression
 – Exp2Tmp – tmp that holds value of each evaluated expression
• Algorithm
 – For each statement
 • If variables in RHS not in the Var2Val add it with a new value
 • If RHS expression in Exp2Tmp use that Temp
 • If not add RHS expression to Exp2Val with new value
 • Copy the value into a new tmp and add to EXp2Tmp
Copy Propagation Summary

• Forward Propagation within basic block
• Maps
 - tmp2var: tells which variable to use instead of a given temporary variable
 - var2set: inverse of tmp to var. tells which temps are mapped to a given variable by tmp to var

Algorithm
 - For each statement
 • If any tmp variable in the RHS is in tmp2var replace it with var
 • If LHS var in var2set remove the variables in the set in tmp2var
Dead Code Elimination Summary

- Backward Propagation within basic block
- Map
 - A set of variables that are needed later in computation
- Algorithm
 - Every statement encountered
 - If LHS is not in the set, remove the statement
 - Else put all the variables in the RHS into the set
Summary So far... what’s next

• Till now: How to analyze and transform within a basic block

• Next: How to do it for the entire procedure
Outline

• Reaching Definitions
• Available Expressions
• Liveness
Reaching Definitions

- Concept of definition and use
 - \(a = x + y \)
 - is a definition of \(a \)
 - is a use of \(x \) and \(y \)
- A definition reaches a use if
 - value written by definition
 - may be read by use
Reaching Definitions

```plaintext
s = 0;
a = 4;
i = 0;
k == 0

b = 1;
b = 2;
i < n

s = s + a*b;
i = i + 1;

return s
```
Reaching Definitions and Constant Propagation

• Is a use of a variable a constant?
 - Check all reaching definitions
 - If all assign variable to same constant
 - Then use is in fact a constant

• Can replace variable with constant
Is a Constant in $s = s + a \times b$?

Yes!

On all reaching definitions

$a = 4$
Constant Propagation Transform

Yes!
On all reaching definitions

\[a = 4 \]

\[s = 0; \]
\[a = 4; \]
\[i = 0; \]
\[k == 0 \]

\[b = 1; \]
\[b = 2; \]

\[i < n \]

\[s = s + 4 \times b; \]
\[i = i + 1; \]

\[\text{return } s \]
Is \(b \) Constant in \(s = s + a \times b \)?

No!

One reaching definition with \(b = 1 \)

One reaching definition with \(b = 2 \)
Splitting
Preserves Information Lost At Merges

\[s = 0; \]
\[a = 4; \]
\[i = 0; \]
\[k == 0 \]

\[b = 1; \]
\[b = 2; \]
\[i < n \]

\[s = s + a*b; \]
\[i = i + 1; \]

\[s = s + a*b; \]
\[i = i + 1; \]

\[return s \]

\[return s \]
Splitting
Preserves Information Lost At Merges

s = 0;
a = 4;
i = 0;
k == 0

b = 1;
b = 2;
i < n
s = s + a*b;
i = i + 1;

return s

s = 0;
a = 4;
i = 0;
k == 0

b = 1;
b = 2;
i < n
s = s + a*1;
i = i + 1;

return s

s = s + a*2;
i = i + 1;

return s
Computing Reaching Definitions

• Compute with sets of definitions
 - represent sets using bit vectors
 - each definition has a position in bit vector

• At each basic block, compute
 definitions that reach start of block
 - definitions that reach end of block

• Do computation by simulating execution of program until reach fixed point
1: s = 0;
2: a = 4;
3: i = 0;
k == 0
4: b = 1;
5: b = 2;
6: s = s + a*b;
7: i = i + 1;

return s
Formalizing Analysis

- Each basic block has
 - IN - set of definitions that reach beginning of block
 - OUT - set of definitions that reach end of block
 - GEN - set of definitions generated in block
 - KILL - set of definitions killed in block

- GEN[s = s + a*b; i = i + 1;] = 0000011
- KILL[s = s + a*b; i = i + 1;] = 1010000
- Compiler scans each basic block to derive GEN and KILL sets
Dataflow Equations

- $\text{IN}[b] = \text{OUT}[b_1] \cup \ldots \cup \text{OUT}[b_n]$
 where b_1, \ldots, b_n are predecessors of b in CFG
- $\text{OUT}[b] = (\text{IN}[b] - \text{KILL}[b]) \cup \text{GEN}[b]$
- $\text{IN}[\text{entry}] = 00000000$
- Result: system of equations
Solving Equations

- Use fixed point algorithm
- Initialize with solution of $\text{OUT}[b] = 0000000$
- Repeatedly apply equations
 - $\text{IN}[b] = \text{OUT}[b1] \cup \ldots \cup \text{OUT}[bn]$
 - $\text{OUT}[b] = (\text{IN}[b] - \text{KILL}[b]) \cup \text{GEN}[b]$
- Until reach fixed point
- Until equation application has no further effect
- Use a worklist to track which equation applications may have a further effect
Reaching Definitions Algorithm

for all nodes n in N
 OUT[n] = emptyset; // OUT[n] = GEN[n];
IN[Entry] = emptyset;
OUT[Entry] = GEN[Entry];
Changed = N - { Entry }; // N = all nodes in graph

while (Changed != emptyset)
 choose a node n in Changed;
 Changed = Changed - { n };

 IN[n] = emptyset;
 for all nodes p in predecessors(n)
 IN[n] = IN[n] U OUT[p];

 OUT[n] = GEN[n] U (IN[n] - KILL[n]);

 if (OUT[n] changed)
 for all nodes s in successors(n)
 Changed = Changed U { s };
Questions

• Does the algorithm halt?
 - yes, because transfer function is monotonic
 - if increase IN, increase OUT
 - in limit, all bits are 1

- If bit is 0, does the corresponding definition ever reach basic block?
- If bit is 1, is does the corresponding definition always reach the basic block?
1: s = 0;
2: a = 4;
3: i = 0;
4: b = 1;
5: b = 2;
6: s = s + a*b;
7: i = i + 1;

\[k == 0 \]

return s
Outline

• Reaching Definitions
• Available Expressions
• Liveness
Available Expressions

• An expression $x+y$ is available at a point p if
 - every path from the initial node to p must evaluate $x+y$ before reaching p,
 - and there are no assignments to x or y after the evaluation but before p.

• Available Expression information can be used to do global (across basic blocks) CSE

• If expression is available at use, no need to reevaluate it
Example: Available Expression

\[
\begin{align*}
 a &= b + c \\
 d &= e + f \\
 f &= a + c \\
 g &= a + c \\
 j &= a + b + c + d \\
 b - a + d &= c + f \\
\end{align*}
\]
Is the Expression Available?

YES!

- \(a = b + c \)
- \(d = e + f \)
- \(f = a + c \)
- \(g = a + c \)
- \(b - a + d \)
- \(h = c + f \)
- \(j = a + b + c + d \)
Is the Expression Available?

YES!

\begin{align*}
a &= b + c \\
d &= e + f \\
f &= a + c \\
g &= a + c \\
b - a + d \\
h &= c + f \\
j &= a + b + c + d
\end{align*}
Is the Expression Available?

\[a = b + c \]
\[d = e + f \]
\[f = a + c \]

\[b = a + d \]
\[h = c + f \]

\[g = a + c \]

\[j = a + b + c + d \]

NO!
Is the Expression Available?

\[a = b + c \]
\[d = e + f \]
\[f = a + c \]

\[b = a + d \]
\[g = a + c \]
\[h = c + f \]
\[j = a + b + c + d \]

NO!
Is the Expression Available?

\[
\begin{align*}
\text{a} &= b + c \\
\text{d} &= e + f \\
\text{f} &= a + c
\end{align*}
\]

\[
\begin{align*}
\text{g} &= a + c \\
\text{b} &= a + d \\
\text{h} &= c + f \\
\text{j} &= a + b + c + d
\end{align*}
\]

NO!
Is the Expression Available?

YES!

\[a = b + c \]
\[d = e + f \]
\[f = a + c \]

\[g = a + c \]

\[j = a + b + c + d \]

\[j = a + b + c + d \]
\[b - a + d \]
\[h = c + f \]
Is the Expression Available?

YES!

\[
\begin{align*}
a &= b + c \\
d &= e + f \\
f &= a + c \\
g &= a + c \\
b &= a + d \\
h &= c + f \\
j &= a + b + c + d
\end{align*}
\]
Use of Available Expressions

\[a = b + c \]
\[d = e + f \]
\[f = a + c \]

\[g = a + c \]

\[b = a + d \]
\[h = c + f \]

\[j = a + b + c + d \]
Use of Available Expressions

\[
\begin{align*}
 a &= b + c \\
 d &= e + f \\
 f &= a + c \\
 g &= a + c \\
 b - a + d &= c + f \\
 j &= a + b + c + d
\end{align*}
\]
Use of Available Expressions

\[a = b + c \]
\[d = e + f \]
\[f = a + c \]

\[g = a + c \]

\[b - a + d \]
\[h = c + f \]

\[j = a + b + c + d \]
Use of Available Expressions

\[a = b + c \]
\[d = e + f \]
\[f = a + c \]
\[\]
\[g = f \]
\[b = a + d \]
\[h = c + f \]
\[j = a + b + c + d \]
Use of Available Expressions

\[a = b + c \]
\[d = e + f \]
\[f = a + c \]

\[g = f \]
\[b - a + d \]
\[h = c + f \]

\[j = a + b + c + d \]
Use of Available Expressions

\[a = b + c \]
\[d = e + f \]
\[f = a + c \]

\[b = a + d \]

\[g = f \]

\[b - a + d \]
\[h = c + f \]

\[j = a + c + b + d \]
Use of Available Expressions

\[a = b + c \]
\[d = e + f \]
\[f = a + c \]

\[g = f \]

\[j = f + b + d \]

\[b - a + d \]
\[h = c + f \]
Use of Available Expressions

\[a = b + c \]
\[d = e + f \]
\[f = a + c \]

\[j = f + b + d \]

\[g = f \]

\[b - a + d \]
\[h = c + f \]
Computing Available Expressions

- Represent sets of expressions using bit vectors
- Each expression corresponds to a bit
- Run dataflow algorithm similar to reaching definitions
- Big difference
 - definition reaches a basic block if it comes from \textit{ANY} predecessor in CFG
 - expression is available at a basic block only if it is available from \textit{ALL} predecessors in CFG
Expressions
1: x+y
2: i\textless{}n
3: i+c
4: x==0
Global CSE Transform

Expressions
1: x+y
2: i<n
3: i+c
4: x==0

must use same temp for CSE in all blocks
Global CSE Transform

Expressions
1: \(x+y \)
2: \(i<n \)
3: \(i+c \)
4: \(x==0 \)

must use same temp for CSE in all blocks

\[a = x+y; \]
\[t = a \]
\[x == 0 \]

\[x = z; \]
\[b = x+y; \]
\[t = b \]

\[i = t; \]

\[i < n \]

\[c = t; \]
\[i = i+c; \]

\[d = t \]
Formalizing Analysis

- Each basic block has
 - IN - set of expressions available at start of block
 - OUT - set of expressions available at end of block
 - GEN - set of expressions computed in block
 - KILL - set of expressions killed in block

- GEN[x = z; b = x+y] = 1000
- KILL[x = z; b = x+y] = 1001
- Compiler scans each basic block to derive GEN and KILL sets
Dataflow Equations

- $IN[b] = OUT[b_1] \cap \ldots \cap OUT[bn]$
 - where b_1, \ldots, bn are predecessors of b in CFG
- $OUT[b] = (IN[b] - KILL[b]) \cup GEN[b]$
- $IN[entry] = 0000$
- Result: system of equations
Solving Equations

- Use fixed point algorithm
- \(\text{IN[entry]} = 0000 \)
- Initialize \(\text{OUT[b]} = 1111 \)
- Repeatedly apply equations
 - \(\text{IN[b]} = \text{OUT}[b_1] \cap ... \cap \text{OUT}[b_n] \)
 - \(\text{OUT}[b] = (\text{IN}[b] - \text{KILL}[b]) \cup \text{GEN}[b] \)
- Use a worklist algorithm to reach fixed point
Available Expressions

Algorithm

for all nodes n in N
 OUT[n] = E; // OUT[n] = E - KILL[n];
IN[Entry] = emptyset;
OUT[Entry] = GEN[Entry];
Changed = N - { Entry }; // N = all nodes in graph

while (Changed != emptyset)
 choose a node n in Changed;
 Changed = Changed - { n };
 IN[n] = E; // E is set of all expressions
 for all nodes p in predecessors(n)
 IN[n] = IN[n] \cap OUT[p];
 OUT[n] = GEN[n] U (IN[n] - KILL[n]);
 if (OUT[n] changed)
 for all nodes s in successors(n)
 Changed = Changed U { s };
Questions

• Does algorithm always halt?

• If expression is available in some execution, is it always marked as available in analysis?

• If expression is not available in some execution, can it be marked as available in analysis?
General Correctness

- Concept in actual program execution
 - Reaching definition: definition D, execution E at program point P
 - Available expression: expression X, execution E at program point P
- Analysis reasons about all possible executions
- For all executions E at program point P,
 - if a definition D reaches P in E
 - then D is in the set of reaching definitions at P from analysis
- Other way around
 - if D is not in the set of reaching definitions at P from analysis
 - then D never reaches P in any execution E
- For all executions E at program point P,
 - if an expression X is in set of available expressions at P from analysis
 - then X is available in E at P
- Concept of being conservative
Duality In Two Algorithms

• Reaching definitions
 - Confluence operation is set union
 - OUT[b] initialized to empty set

• Available expressions
 - Confluence operation is set intersection
 - OUT[b] initialized to set of available expressions

• General framework for dataflow algorithms.

• Build parameterized dataflow analyzer once, use for all dataflow problems
Outline

• Reaching Definitions
• Available Expressions
• Liveness
Liveness Analysis

• A variable v is live at point p if
 - v is used along some path starting at p, and
 - no definition of v along the path before the use.

• When is a variable v dead at point p?
 - No use of v on any path from p to exit node, or
 - If all paths from p redefine v before using v.
What Use is Liveness Information?

• Register allocation.
 - If a variable is dead, can reassign its register

• Dead code elimination.
 - Eliminate assignments to variables not read later.
 - But must not eliminate last assignment to variable (such as instance variable) visible outside CFG.
 - Can eliminate other dead assignments.
 - Handle by making all externally visible variables live on exit from CFG
Conceptual Idea of Analysis

- Simulate execution
- But start from exit and go backwards in CFG
- Compute liveness information from end to beginning of basic blocks
Liveness Example

- Assume a, b, c visible outside method
- So are live on exit
- Assume x, y, z, t not visible
- Represent Liveness Using Bit Vector
 - order is abcxyzt
Dead Code Elimination

- Assume a,b,c visible outside method
- So are live on exit
- Assume x,y,z,t not visible
- Represent Liveness Using Bit Vector
 - order is $abcxyzt$

```plaintext
a = x+y;
t = a;
c = a+x;
x == 0

b = t+z;
c = y+1;
```

```
0101110
a = x+y;
t = a;
c = a+x;
x == 0
1100111
abcxyzt
```

```
1000111
b = t+z;
1100100
abcxyzt
```

```
1100100
c = y+1;
1110000
abcxyzt
```
Formalizing Analysis

• Each basic block has
 - IN set of variables live at start of block
 - OUT - set of variables live at end of block
 - USE - set of variables with upwards exposed uses in block
 - DEF - set of variables defined in block

• $\text{USE}[x = z; x = x+1;] = \{ z \}$ (x not in USE)
• $\text{DEF}[x = z; x = x+1; y = 1;] = \{x, y\}$
• Compiler scans each basic block to derive USE and DEF sets
Algorithm

for all nodes n in N - { Exit }
 IN[n] = emptyset;
OUT[Exit] = emptyset;
IN[Exit] = use[Exit];
Changed = N - { Exit };

while (Changed != emptyset)
 choose a node n in Changed;
 Changed = Changed - { n };

 OUT[n] = emptyset;
 for all nodes s in successors(n)
 OUT[n] = OUT[n] U IN[p];

 IN[n] = use[n] U (out[n] - def[n]);

if (IN[n] changed)
 for all nodes p in predecessors(n)
 Changed = Changed U { p };

Saman Amarasinghe

6.035 ©MIT Fall 1998
Similar to Other Dataflow Algorithms

- Backwards analysis, not forwards
- Still have transfer functions
- Still have confluence operators
- Can generalize framework to work for both forwards and backwards analyses
Comparison

Reaching Definitions

for all nodes n in N
 \[\text{OUT}[n] = \text{emptyset}; \]
 \[\text{IN}[\text{Entry}] = \text{emptyset}; \]
 \[\text{OUT}[\text{Entry}] = \text{GEN}[\text{Entry}]; \]
 Changed = N - \{ \text{Entry} \};

while (Changed \neq \text{emptyset})
 choose a node n in Changed;
 Changed = Changed \setminus \{ n \};

 \[\text{IN}[n] = \text{emptyset}; \]
 for all nodes p in predecessors(n)
 \[\text{IN}[n] = \text{IN}[n] \cup \text{OUT}[p]; \]

 \[\text{OUT}[n] = \text{GEN}[n] \cup (\text{IN}[n] - \text{KILL}[n]); \]
 if (OUT[n] changed)
 for all nodes s in successors(n)
 Changed = Changed \cup \{ s \};

Available Expressions

for all nodes n in N
 \[\text{OUT}[n] = E; \]
 \[\text{IN}[\text{Entry}] = \text{emptyset}; \]
 \[\text{OUT}[\text{Entry}] = \text{GEN}[\text{Entry}]; \]
 Changed = N - \{ \text{Entry} \};

while (Changed \neq \text{emptyset})
 choose a node n in Changed;
 Changed = Changed \setminus \{ n \};

 \[\text{IN}[n] = E; \]
 for all nodes p in predecessors(n)
 \[\text{IN}[n] = \text{IN}[n] \cap \text{OUT}[p]; \]

 \[\text{OUT}[n] = \text{GEN}[n] \cup (\text{IN}[n] - \text{KILL}[n]); \]
 if (OUT[n] changed)
 for all nodes s in successors(n)
 Changed = Changed \cup \{ s \};

Liveness

for all nodes n in N - \{ \text{Exit} \}
 \[\text{IN}[n] = \text{emptyset}; \]
 \[\text{OUT}[\text{Exit}] = \text{emptyset}; \]
 \[\text{IN}[\text{Exit}] = \text{use}[\text{Exit}]; \]
 Changed = N - \{ \text{Exit} \};

while (Changed \neq \text{emptyset})
 choose a node n in Changed;
 Changed = Changed \setminus \{ n \};

 \[\text{OUT}[n] = \text{emptyset}; \]
 for all nodes s in successors(n)
 \[\text{OUT}[n] = \text{OUT}[n] \cup \text{IN}[p]; \]

 \[\text{IN}[n] = \text{use}[n] \cup (\text{out}[n] - \text{def}[n]); \]
 if (IN[n] changed)
 for all nodes p in predecessors(n)
 Changed = Changed \cup \{ p \};
Reaching Definitions

for all nodes \(n \) in \(N \)

\[
\text{OUT}[n] = \text{emptyset};
\]

\[
\text{IN}[\text{Entry}] = \text{emptyset};
\]

\[
\text{OUT}[\text{Entry}] = \text{GEN}[\text{Entry}];
\]

\[
\text{Changed} = N - \{\text{Entry}\};
\]

while (\text{Changed} \neq \text{emptyset})

\[
\text{choose a node } n \text{ in } \text{Changed};
\]

\[
\text{Changed} = \text{Changed} - \{ n \};
\]

\[
\text{IN}[n] = \text{emptyset};
\]

for all nodes \(p \) in predecessors(\(n \))

\[
\text{IN}[n] = \text{IN}[n] \cup \text{OUT}[p];
\]

\[
\text{OUT}[n] = \text{GEN}[n] \cup (\text{IN}[n] - \text{KILL}[n]);
\]

if (\text{OUT}[n] changed)

\[
\text{for all nodes } s \text{ in successors}(n)
\]

\[
\text{Changed} = \text{Changed} \cup \{ s \};
\]

Available Expressions

for all nodes \(n \) in \(N \)

\[
\text{OUT}[n] = \text{E};
\]

\[
\text{IN}[\text{Entry}] = \text{emptyset};
\]

\[
\text{OUT}[\text{Entry}] = \text{GEN}[\text{Entry}];
\]

\[
\text{Changed} = N - \{\text{Entry}\};
\]

while (\text{Changed} \neq \text{emptyset})

\[
\text{choose a node } n \text{ in } \text{Changed};
\]

\[
\text{Changed} = \text{Changed} - \{ n \};
\]

\[
\text{IN}[n] = \text{E};
\]

for all nodes \(p \) in predecessors(\(n \))

\[
\text{IN}[n] = \text{IN}[n] \cap \text{OUT}[p];
\]

\[
\text{OUT}[n] = \text{GEN}[n] \cup (\text{IN}[n] - \text{KILL}[n]);
\]

if (\text{OUT}[n] changed)

\[
\text{for all nodes } s \text{ in successors}(n)
\]

\[
\text{Changed} = \text{Changed} \cup \{ s \};
\]
<table>
<thead>
<tr>
<th>Reaching Definitions</th>
<th>Liveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>for all nodes n in N</td>
<td>for all nodes n in N</td>
</tr>
<tr>
<td>$\text{OUT}[n] = \text{emptyset}$;</td>
<td>$\text{IN}[n] = \text{emptyset}$;</td>
</tr>
<tr>
<td>$\text{IN}[\text{Entry}] = \text{emptyset}$;</td>
<td>$\text{OUT}[\text{Exit}] = \text{emptyset}$;</td>
</tr>
<tr>
<td>$\text{OUT}[\text{Entry}] = \text{GEN}[\text{Entry}]$;</td>
<td>$\text{IN}[\text{Exit}] = \text{use}[\text{Exit}]$;</td>
</tr>
<tr>
<td>$\text{Changed} = N - { \text{Entry} }$;</td>
<td>$\text{Changed} = N - { \text{Exit} }$;</td>
</tr>
<tr>
<td>while (Changed != emptyset)</td>
<td>while (Changed != emptyset)</td>
</tr>
<tr>
<td>\hspace{1em} choose a node n in Changed;</td>
<td>\hspace{1em} choose a node n in Changed;</td>
</tr>
<tr>
<td>\hspace{1em} Changed \leftarrow Changed $\setminus { n }$;</td>
<td>\hspace{1em} Changed \leftarrow Changed $\setminus { n }$;</td>
</tr>
<tr>
<td>$\text{IN}[n] = \text{emptyset}$;</td>
<td>$\text{OUT}[n] = \text{emptyset}$;</td>
</tr>
<tr>
<td>\hspace{1em} for all nodes p in predecessors(n)</td>
<td>\hspace{1em} for all nodes s in successors(n)</td>
</tr>
<tr>
<td>\hspace{2em} $\text{IN}[n] = \text{IN}[n] \cup \text{OUT}[p]$;</td>
<td>\hspace{2em} $\text{OUT}[n] = \text{OUT}[n] \cup \text{IN}[p]$;</td>
</tr>
<tr>
<td>$\text{OUT}[n] = \text{GEN}[n] \cup (\text{IN}[n] - \text{KILL}[n])$;</td>
<td>$\text{IN}[n] = \text{use}[n] \cup (\text{OUT}[n] - \text{def}[n])$;</td>
</tr>
<tr>
<td>if (OUT[n] changed)</td>
<td>if (IN[n] changed)</td>
</tr>
<tr>
<td>\hspace{1em} for all nodes s in successors(n)</td>
<td>\hspace{1em} for all nodes p in predecessors(n)</td>
</tr>
<tr>
<td>\hspace{2em} Changed \leftarrow Changed $\cup { s }$;</td>
<td>\hspace{2em} Changed \leftarrow Changed $\cup { p }$;</td>
</tr>
</tbody>
</table>
Analysis Information Inside Basic Blocks

- One detail:
 - Given dataflow information at IN and OUT of node
 - Also need to compute information at each statement of basic block
 - Simple propagation algorithm usually works fine
 - Can be viewed as restricted case of dataflow analysis
Pessimistic vs. Optimistic Analyses

- Available expressions is optimistic
 (for common sub-expression elimination)
 - Assume expressions are available at start of analysis
 - Analysis eliminates all that are not available
 - Cannot stop analysis early and use current result
- Live variables is pessimistic (for dead code elimination)
 - Assume all variables are live at start of analysis
 - Analysis finds variables that are dead
 Can stop analysis early and use current result
- Dataflow setup same for both analyses
- Optimism/pessimism depends on intended use
Summary

• Basic Blocks and Basic Block Optimizations
 - Copy and constant propagation
 - Common sub-expression elimination
 - Dead code elimination

• Dataflow Analysis
 - Control flow graph
 - IN[b], OUT[b], transfer functions, join points

• Paired analyses and transformations
 - Reaching definitions / constant propagation
 - Available expressions / common sub-expression elimination
 - Liveness analysis / Dead code elimination

• Stacked analysis and transformations work together
6.035 Computer Language Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.