Dataflow Analysis

- Compile-Time Reasoning About
- Run-Time Values of Variables or Expressions
- At Different Program Points
 - Which assignment statements produced value of variable at this point?
 - Which variables contain values that are no longer used after this program point?
 - What is the range of possible values of variable at this program point?
Program Representation

- **Control Flow Graph**
 - Nodes N – statements of program
 - Edges E – flow of control
 - $\text{pred}(n) =$ set of all predecessors of n
 - $\text{succ}(n) =$ set of all successors of n
 - Start node n_0
 - Set of final nodes N_{final}
Program Points

- One program point before each node
- One program point after each node
- Join point – point with multiple predecessors
- Split point – point with multiple successors
Basic Idea

- Information about program represented using values from algebraic structure called lattice
- Analysis produces lattice value for each program point
- Two flavors of analysis
 - Forward dataflow analysis
 - Backward dataflow analysis
Forward Dataflow Analysis

- Analysis propagates values forward through control flow graph with flow of control
 - Each node has a transfer function f
 - Input – value at program point before node
 - Output – new value at program point after node
 - Values flow from program points after predecessor nodes to program points before successor nodes
 - At join points, values are combined using a merge function
- Canonical Example: Reaching Definitions
Backward Dataflow Analysis

- Analysis propagates values backward through control flow graph against flow of control
 - Each node has a transfer function f
 - Input – value at program point after node
 - Output – new value at program point before node
 - Values flow from program points before successor nodes to program points after predecessor nodes
 - At split points, values are combined using a merge function
- Canonical Example: Live Variables
Partial Orders

- Set P
- Partial order \leq such that $\forall x,y,z \in P$
 - $x \leq x$ (reflexive)
 - $x \leq y$ and $y \leq x$ implies $x = y$ (asymmetric)
 - $x \leq y$ and $y \leq z$ implies $x \leq z$ (transitive)
- Can use partial order to define
 - Upper and lower bounds
 - Least upper bound
 - Greatest lower bound
Upper Bounds

• If $S \subseteq P$ then
 – $x \in P$ is an upper bound of S if $\forall y \in S. \, y \leq x$
 – $x \in P$ is the least upper bound of S if
 • x is an upper bound of S, and
 • $x \leq y$ for all upper bounds y of S
 – \lor - join, least upper bound, lub, supremum, sup
 • $\lor S$ is the least upper bound of S
 • $x \lor y$ is the least upper bound of $\{x, y\}$
Lower Bounds

• If $S \subseteq P$ then
 – $x \in P$ is a lower bound of S if $\forall y \in S. \ x \leq y$
 – $x \in P$ is the greatest lower bound of S if
 • x is a lower bound of S, and
 • $y \leq x$ for all lower bounds y of S
 – \land - meet, greatest lower bound, glb, infimum, inf
 • $\land S$ is the greatest lower bound of S
 • $x \land y$ is the greatest lower bound of $\{x, y\}$
Covering

- $x < y$ if $x \leq y$ and $x \neq y$
- x is covered by y (y covers x) if
 - $x < y$, and
 - $x \leq z < y$ implies $x = z$
- Conceptually, y covers x if there are no elements between x and y
Example

• $P = \{ \text{000, 001, 010, 011, 100, 101, 110, 111}\}$
 (standard boolean lattice, also called hypercube)
• $x \leq y$ if $(x \text{ bitwise and } y) = x$

Hasse Diagram

• If y covers x
 • Line from y to x
 • y above x in diagram
• If \(x \land y \) and \(x \lor y \) exist for all \(x, y \in P \),
then \(P \) is a lattice.
• If \(\land S \) and \(\lor S \) exist for all \(S \subseteq P \),
then \(P \) is a complete lattice.
• All finite lattices are complete
Lattices

• If $x \land y$ and $x \lor y$ exist for all $x,y \in P$, then P is a lattice.
• If $\land S$ and $\lor S$ exist for all $S \subseteq P$, then P is a complete lattice.
• All finite lattices are complete
• Example of a lattice that is not complete
 – Integers I
 – For any $x, y \in I$, $x \lor y = \max(x,y)$, $x \land y = \min(x,y)$
 – But $\lor I$ and $\land I$ do not exist
 – $I \cup \{+\infty, -\infty\}$ is a complete lattice
Top and Bottom

- Greatest element of P (if it exists) is top
- Least element of P (if it exists) is bottom (⊥)
Connection Between \leq, \land, and \lor

- The following 3 properties are equivalent:
 - $x \leq y$
 - $x \lor y = y$
 - $x \land y = x$

- Will prove:
 - $x \leq y$ implies $x \lor y = y$ and $x \land y = x$
 - $x \lor y = y$ implies $x \leq y$
 - $x \land y = x$ implies $x \leq y$

- Then by transitivity, can obtain
 - $x \lor y = y$ implies $x \land y = x$
 - $x \land y = x$ implies $x \lor y = y$
Connecting Lemma Proofs

• Proof of \(x \leq y \) implies \(x \lor y = y \)
 – \(x \leq y \) implies \(y \) is an upper bound of \(\{x,y\} \).
 – Any upper bound \(z \) of \(\{x,y\} \) must satisfy \(y \leq z \).
 – So \(y \) is least upper bound of \(\{x,y\} \) and \(x \lor y = y \)

• Proof of \(x \leq y \) implies \(x \land y = x \)
 – \(x \leq y \) implies \(x \) is a lower bound of \(\{x,y\} \).
 – Any lower bound \(z \) of \(\{x,y\} \) must satisfy \(z \leq x \).
 – So \(x \) is greatest lower bound of \(\{x,y\} \) and \(x \land y = x \)
Connecting Lemma Proofs

- **Proof of** $x \lor y = y$ **implies** $x \leq y$
 - y is an upper bound of $\{x, y\}$ implies $x \leq y$
- **Proof of** $x \land y = x$ **implies** $x \leq y$
 - x is a lower bound of $\{x, y\}$ implies $x \leq y$
Lattices as Algebraic Structures

- Have defined \vee and \wedge in terms of \leq
- Will now define \leq in terms of \vee and \wedge
 - Start with \vee and \wedge as arbitrary algebraic operations that satisfy associative, commutative, idempotence, and absorption laws
 - Will define \leq using \vee and \wedge
 - Will show that \leq is a partial order
- Intuitive concept of \vee and \wedge as information combination operators (or, and)
Algebraic Properties of Lattices

Assume arbitrary operations \lor and \land such that

- $(x \lor y) \lor z = x \lor (y \lor z)$ (associativity of \lor)
- $(x \land y) \land z = x \land (y \land z)$ (associativity of \land)
- $x \lor y = y \lor x$ (commutativity of \lor)
- $x \land y = y \land x$ (commutativity of \land)
- $x \lor x = x$ (idempotence of \lor)
- $x \land x = x$ (idempotence of \land)
- $x \lor (x \land y) = x$ (absorption of \lor over \land)
- $x \land (x \lor y) = x$ (absorption of \land over \lor)
Connection Between \land and \lor

- $x \lor y = y$ if and only if $x \land y = x$
- Proof of $x \lor y = y$ implies $x = x \land y$
 \[
x = x \land (x \lor y) \quad \text{(by absorption)}
 \]
 \[
 = x \land y \quad \text{(by assumption)}
 \]
- Proof of $x \land y = x$ implies $y = x \lor y$
 \[
y = y \lor (y \land x) \quad \text{(by absorption)}
 \]
 \[
 = y \lor (x \land y) \quad \text{(by commutativity)}
 \]
 \[
 = y \lor x \quad \text{(by assumption)}
 \]
 \[
 = x \lor y \quad \text{(by commutativity)}
 \]
Properties of \leq

- Define $x \leq y$ if $x \lor y = y$
- Proof of transitive property. Must show that
 $x \lor y = y$ and $y \lor z = z$ implies $x \lor z = z$

 $x \lor z = x \lor (y \lor z)$ (by assumption)
 $= (x \lor y) \lor z$ (by associativity)
 $= y \lor z$ (by assumption)
 $= z$ (by assumption)
Properties of \leq

- Proof of asymmetry property. Must show that $x \lor y = y$ and $y \lor x = x$ implies $x = y$

 \[
 x = y \lor x \quad \text{(by assumption)}
 \]

 \[
 = x \lor y \quad \text{(by commutativity)}
 \]

 \[
 = y \quad \text{(by assumption)}
 \]

- Proof of reflexivity property. Must show that $x \lor x = x$

 \[
 x \lor x = x \quad \text{(by idempotence)}
 \]
Properties of \leq

- Induced operation \leq agrees with original definitions of \lor and \land, i.e.,
 - $x \lor y = \sup \{x, y\}$
 - $x \land y = \inf \{x, y\}$
Proof of \(x \lor y = \text{sup} \{x, y\} \)

- Consider any upper bound \(u \) for \(x \) and \(y \).
- Given \(x \lor u = u \) and \(y \lor u = u \), must show \(x \lor y \leq u \), i.e., \((x \lor y) \lor u = u\)

 \[
 \begin{align*}
 u &= x \lor u \quad \text{(by assumption)} \\
 &= x \lor (y \lor u) \quad \text{(by assumption)} \\
 &= (x \lor y) \lor u \quad \text{(by associativity)}
 \end{align*}
 \]
Proof of $x \land y = \inf \{x, y\}$

- Consider any lower bound l for x and y.
- Given $x \land l = l$ and $y \land l = l$, must show $l \leq x \land y$, i.e., $(x \land y) \land l = l$

\[
\begin{align*}
l &= x \land l \quad \text{(by assumption)} \\
 &= x \land (y \land l) \quad \text{(by assumption)} \\
 &= (x \land y) \land l \quad \text{(by associativity)}
\end{align*}
\]
Chains

• A set S is a chain if $\forall x, y \in S. \ y \leq x \ or \ x \leq y$
• P has no infinite chains if every chain in P is finite
• P satisfies the ascending chain condition if for all sequences $x_1 \leq x_2 \leq \ldots$ there exists n such that $x_n = x_{n+1} = \ldots$
Application to Dataflow Analysis

• Dataflow information will be lattice values
 – Transfer functions operate on lattice values
 – Solution algorithm will generate increasing sequence of values at each program point
 – Ascending chain condition will ensure termination

• Will use \vee to combine values at control-flow join points
Transfer Functions

• Transfer function $f: P \rightarrow P$ for each node in control flow graph
• f models effect of the node on the program information
Transfer Functions

Each dataflow analysis problem has a set F of transfer functions $f: P \rightarrow P$

- Identity function $i \in F$
- F must be closed under composition:
 $\forall f, g \in F$. the function $h = \lambda x. f(g(x)) \in F$
- Each $f \in F$ must be monotone:
 $x \leq y$ implies $f(x) \leq f(y)$
- Sometimes all $f \in F$ are distributive:
 $f(x \lor y) = f(x) \lor f(y)$

Distributivity implies monotonicity
Distributivity Implies Monotonicity

- Proof of distributivity implies monotonicity
- Assume $f(x \lor y) = f(x) \lor f(y)$
- Must show: $x \lor y = y$ implies $f(x) \lor f(y) = f(y)$

 $f(y) = f(x \lor y)$ \hspace{1cm} (by assumption)

 $= f(x) \lor f(y)$ \hspace{1cm} (by distributivity)
Putting Pieces Together

- Forward Dataflow Analysis Framework
- Simulates execution of program forward with flow of control
Forward Dataflow Analysis

• Simulates execution of program forward with flow of control

• For each node n, have
 – in_n – value at program point before n
 – out_n – value at program point after n
 – f_n – transfer function for n (given in_n, computes out_n)

• Require that solution satisfy
 – $\forall n. \ out_n = f_n(in_n)$
 – $\forall n \neq n_0. \ in_n = \lor \{ \ out_m . \ m \ in \ pred(n) \}$
 – $in_{n_0} = I$
 – Where I summarizes information at start of program
Dataflow Equations

- Compiler processes program to obtain a set of dataflow equations

 \[
 \text{out}_n := f_n(\text{in}_n) \\
 \text{in}_n := \lor \left\{ \text{out}_m . m \in \text{pred}(n) \right\}
 \]

- Conceptually separates analysis problem from program
Worklist Algorithm for Solving Forward Dataflow Equations

for each \(n \) do \(\text{out}_n := f_n(\bot) \)

\(\text{in}_{n_0} := I; \text{out}_{n_0} := f_{n_0}(I) \)

worklist := \(N - \{ n_0 \} \)

while worklist \(\neq \emptyset \) do

remove a node \(n \) from worklist

\(\text{in}_n := \lor \{ \text{out}_m . m \text{ in pred}(n) \} \)

\(\text{out}_n := f_n(\text{in}_n) \)

if \(\text{out}_n \) changed then

worklist := worklist \(\cup \) succ\((n)\)

Correctness Argument

- Why result satisfies dataflow equations
- Whenever process a node n, set $\text{out}_n := f_n(\text{in}_n)$
 Algorithm ensures that $\text{out}_n = f_n(\text{in}_n)$
- Whenever out_m changes, put $\text{succ}(m)$ on worklist.
 Consider any node $n \in \text{succ}(m)$. It will eventually come off worklist and algorithm will set

 $$\text{in}_n := \lor \{ \text{out}_m \cdot m \text{ in } \text{pred}(n) \}$$

 to ensure that $\text{in}_n = \lor \{ \text{out}_m \cdot m \text{ in } \text{pred}(n) \}$
- So final solution will satisfy dataflow equations
Termination Argument

• Why does algorithm terminate?
• Sequence of values taken on by in_n or out_n is a chain. If values stop increasing, worklist empties and algorithm terminates.
• If lattice has ascending chain property, algorithm terminates
 – Algorithm terminates for finite lattices
 – For lattices without ascending chain property, use widening operator
Widening Operators

- Detect lattice values that may be part of infinitely ascending chain
- Articially raise value to least upper bound of chain
- Example:
 - Lattice is set of all subsets of integers
 - Could be used to collect possible values taken on by variable during execution of program
 - Widening operator might raise all sets of size n or greater to TOP (likely to be useful for loops)
Reaching Definitions

- \(P = \text{powerset of set of all definitions in program (all subsets of set of definitions in program)} \)
- \(\lor = \cup \) (order is \(\subseteq \))
- \(\bot = \emptyset \)
- \(I = \text{in}_{n_0} = \bot \)
- \(F = \text{all functions } f \text{ of the form } f(x) = a \cup (x-b) \)
 - \(a \) is set of definitions that node generates
 - \(b \) is set of definitions that node kills
- \(\text{General pattern for many transfer functions} \)
 - \(f(x) = \text{GEN} \cup (x-\text{KILL}) \)
Does Reaching Definitions Framework Satisfy Properties?

- \subseteq satisfies conditions for \leq
 - $x \subseteq y$ and $y \subseteq z$ implies $x \subseteq z$ (transitivity)
 - $x \subseteq y$ and $y \subseteq x$ implies $y = x$ (asymmetry)
 - $x \subseteq x$ (idempotence)

- F satisfies transfer function conditions
 - $\lambda x. \emptyset \cup (x - \emptyset) = \lambda x. x \in F$ (identity)
 - Will show $f(x \cup y) = f(x) \cup f(y)$ (distributivity)
 - $f(x) \cup f(y) = (a \cup (x - b)) \cup (a \cup (y - b))$
 - $= a \cup (x - b) \cup (y - b) = a \cup ((x \cup y) - b)$
 - $= f(x \cup y)$
Does Reaching Definitions Framework Satisfy Properties?

• What about composition?
 – Given $f_1(x) = a_1 \cup (x-b_1)$ and $f_2(x) = a_2 \cup (x-b_2)$
 – Must show $f_1(f_2(x))$ can be expressed as $a \cup (x - b)$

 $f_1(f_2(x)) = a_1 \cup ((a_2 \cup (x-b_2)) - b_1)$

 $= a_1 \cup ((a_2 - b_1) \cup ((x-b_2) - b_1))$

 $= (a_1 \cup (a_2 - b_1)) \cup ((x-b_2) - b_1))$

 $= (a_1 \cup (a_2 - b_1)) \cup (x-(b_2 \cup b_1))$

 – Let $a = (a_1 \cup (a_2 - b_1))$ and $b = b_2 \cup b_1$

 – Then $f_1(f_2(x)) = a \cup (x - b)$
General Result

All GEN/KILL transfer function frameworks satisfy
- Identity
- Distributivity
- Composition

Properties
Available Expressions

- $P = \text{powerset of set of all expressions in program (all subsets of set of expressions)}$
- $\lor = \cap$ (order is \supseteq)
- $\bot = P$
- $I = \text{in}_{n_0} = \emptyset$
- $F = \text{all functions } f \text{ of the form } f(x) = a \cup (x-b)$
 - b is set of expressions that node kills
 - a is set of expressions that node generates
- Another GEN/KILL analysis
Concept of Conservatism

• Reaching definitions use \cup as join
 – Optimizations must take into account all definitions that reach along ANY path

• Available expressions use \cap as join
 – Optimization requires expression to reach along ALL paths

• Optimizations must conservatively take all possible executions into account. Structure of analysis varies according to way analysis used.
Backward Dataflow Analysis

• Simulates execution of program backward against the flow of control
• For each node \(n \), have
 – \(\text{in}_n \) – value at program point before \(n \)
 – \(\text{out}_n \) – value at program point after \(n \)
 – \(f_n \) – transfer function for \(n \) (given \(\text{out}_n \), computes \(\text{in}_n \))
• Require that solution satisfies
 – \(\forall n. \text{in}_n = f_n(\text{out}_n) \)
 – \(\forall n \not\in N_{\text{final}}. \text{out}_n = \lor \{ \text{in}_m . m \in \text{succ}(n) \} \)
 – \(\forall n \in N_{\text{final}} = \text{out}_n = O \)
 – Where \(O \) summarizes information at end of program
Worklist Algorithm for Solving Backward Dataflow Equations

for each n do $\text{in}_n := f_n(\bot)$
for each $n \in N_{\text{final}}$ do $\text{out}_n := O$; $\text{in}_n := f_n(O)$
worklist := $N - N_{\text{final}}$
while worklist $\neq \emptyset$ do
 remove a node n from worklist
 $\text{out}_n := \lor \{ \text{in}_m \cdot m \in \text{succ}(n) \}$
 $\text{in}_n := f_n(\text{out}_n)$
 if in_n changed then
 worklist := worklist $\cup \text{pred}(n)$
Live Variables

- $P = \text{powerset of set of all variables in program (all subsets of set of variables in program)}$
- $\lor = \cup \text{ (order is } \subseteq\text{)}$
- $\bot = \emptyset$
- $O = \emptyset$
- $F = \text{all functions } f \text{ of the form } f(x) = a \cup (x-b)$
 - b is set of variables that node kills
 - a is set of variables that node reads
Meaning of Dataflow Results

• Concept of program state s for control-flow graphs
 • Program point n where execution located
 (n is node that will execute next)
 • Values of variables in program
 • Each execution generates a trajectory of states:
 - $s_0; s_1; \ldots; s_k$, where each $s_i \in ST$
 - s_{i+1} generated from s_i by executing basic block to
 • Update variable values
 • Obtain new program point n
Relating States to Analysis Result

- Meaning of analysis results is given by an abstraction function $\text{AF}: ST \rightarrow P$
- Correctness condition: require that for all states s
 \[\text{AF}(s) \leq \text{in}_n \]
 where n is the next statement to execute in state s
Sign Analysis Example

- Sign analysis - compute sign of each variable \(v \)
- Base Lattice: \(P = \) flat lattice on \(\{-, 0, +\} \)

![Diagram of lattice]

- Actual lattice records a value for each variable
 - Example element: \([a \rightarrow +, \ b \rightarrow 0, \ c \rightarrow -]\)
Interpretation of Lattice Values

• If value of v in lattice is:
 – BOT: no information about sign of v
 – -: variable v is negative
 – 0: variable v is 0
 – +: variable v is positive
 – TOP: v may be positive or negative

• What is abstraction function AF?
 – AF([x_1,\ldots,x_n]) = [\text{sign}(x_1), \ldots, \text{sign}(x_n)]
 – Where \text{sign}(x) = 0 \text{ if } x = 0, + \text{ if } x > 0, - \text{ if } x < 0
Operation \otimes on Lattice

<table>
<thead>
<tr>
<th></th>
<th>BOT</th>
<th>-</th>
<th>0</th>
<th>+</th>
<th>TOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOT</td>
<td>BOT</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>TOP</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>TOP</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>TOP</td>
</tr>
<tr>
<td>TOP</td>
<td>TOP</td>
<td>TOP</td>
<td>0</td>
<td>TOP</td>
<td>TOP</td>
</tr>
</tbody>
</table>
Transfer Functions

• If \(n \) of the form \(v = c \)

 – \(f_n(x) = x[v \rightarrow +] \) if \(c \) is positive

 – \(f_n(x) = x[v \rightarrow 0] \) if \(c \) is 0

 – \(f_n(x) = x[v \rightarrow -] \) if \(c \) is negative

• If \(n \) of the form \(v_1 = v_2 \cdot v_3 \)

 – \(f_n(x) = x[v_1 \rightarrow x[v_2] \otimes x[v_3]] \)

• \(I = \text{TOP} \)

 (uninitialized variables may have any sign)
Example

\[a = 1 \]

\[b = -1 \]

\[c = a \times b \]

\[[a \rightarrow +, \ b \rightarrow -] \]

\[[a \rightarrow +, \ b \rightarrow +] \]

\[[a \rightarrow +, \ b \rightarrow \text{TOP}] \]

\[[a \rightarrow +, \ b \rightarrow \text{TOP}, \ c \rightarrow \text{TOP}] \]
Imprecision In Example

Abstraction Imprecision:
\[[a \rightarrow 1] \text{ abstracted as } [a \rightarrow +] \]

\[[a \rightarrow +] \]

\[b = -1 \]

\[[a \rightarrow +, b \rightarrow -] \]

\[[a \rightarrow +, b \rightarrow \text{TOP}] \]

\[c = a \times b \]

Control Flow Imprecision:
\[[b \rightarrow \text{TOP}] \text{ summarizes results of all executions. In any execution state } s, \text{ AF}(s)[b] \neq \text{TOP} \]
General Sources of Imprecision

- **Abstraction Imprecision**
 - Concrete values (integers) abstracted as lattice values (-, 0, and +)
 - Lattice values less precise than execution values
 - Abstraction function throws away information

- **Control Flow Imprecision**
 - One lattice value for all possible control flow paths
 - Analysis result has a single lattice value to summarize results of multiple concrete executions
 - Join operation \lor moves up in lattice to combine values from different execution paths
 - Typically if $x \leq y$, then x is more precise than y
Why Have Imprecision

• Make analysis tractable
• Unbounded sets of values in execution
 – Typically abstracted by finite set of lattice values
• Execution may visit unbounded set of states
 – Abstracted by computing joins of different paths
Abstraction Function

• $AF(s)[v] = \text{sign of } v$
 – $AF(n, [a \rightarrow 5, b \rightarrow 0, c \rightarrow -2]) = [a \rightarrow +, b \rightarrow 0, c \rightarrow -]$

• Establishes meaning of the analysis results
 – If analysis says variable has a given sign
 – Always has that sign in actual execution

• Correctness condition:
 – $\forall v. AF(s)[v] \leq in_n[v]$ (n is node for s)
 – Reflects possibility of imprecision
Abstraction Function Soundness

- Will show
 \[\forall v. \ AF(s)[v] \leq in_n[v] \ (n \text{ is node for } s) \]
 by induction on length of computation that produced \(s \)

- Base case:
 - \[\forall v. \ in_{n_0}[v] = \text{TOP}, \text{ which implies that} \]
 - \[\forall v. \ AF(s)[v] \leq \text{TOP} \]
Induction Step

- Assume \(\forall v. \ AF(s)[v] \leq in_n[v] \) for computations of length \(k \)
- Prove for computations of length \(k+1 \)
- Proof:
 - Given \(s \) (state), \(n \) (node to execute next), and \(in_n \)
 - Find \(p \) (the node that just executed), \(s_p \) (the previous state), and \(in_p \)
 - By induction hypothesis \(\forall v. \ AF(s_p)[v] \leq in_p[v] \)
 - Case analysis on form of \(n \)
 - If \(n \) of the form \(v = c \), then
 - \(s[v] = c \) and \(out_p[v] = \text{sign}(c) \), so
 \[AF(s)[v] = \text{sign}(c) = out_p[v] \leq in_n[v] \]
 - If \(x \neq v \), \(s[x] = s_p[x] \) and \(out_p[x] = in_p[x] \), so
 \[AF(s)[x] = AF(s_p)[x] \leq in_p[x] = out_p[x] \leq in_n[x] \]
 - Similar reasoning if \(n \) of the form \(v_1 = v_2 \cdot v_3 \)
Augmented Execution States

• Abstraction functions for some analyses require augmented execution states
 – Reaching definitions: states are augmented with definition that created each value
 – Available expressions: states are augmented with expression for each value
Meet Over Paths Solution

• What solution would be ideal for a forward dataflow analysis problem?
• Consider a path \(p = n_0, n_1, \ldots, n_k, n \) to a node \(n \) (note that for all \(i \) \(n_i \in \text{pred}(n_{i+1}) \))
• The solution must take this path into account:
 \[
 f_p(\bot) = (f_{n_k}(f_{n_{k-1}}(\ldots f_{n_1}(f_{n_0}(\bot)) \ldots)) \leq \text{in}_n
 \]
• So the solution must have the property that
 \[
 \forall \{ f_p(\bot) \cdot p \text{ is a path to } n \} \leq \text{in}_n
 \]
 and ideally
 \[
 \forall \{ f_p(\bot) \cdot p \text{ is a path to } n \} = \text{in}_n
 \]
Soundness Proof of Analysis Algorithm

• Property to prove:
 \[\text{For all paths } p \text{ to } n, \quad f_p(\bot) \leq in_n \]

• Proof is by induction on length of \(p \)
 – Uses monotonicity of transfer functions
 Uses following lemma

• Lemma:
 Worklist algorithm produces a solution such that
 \[f_n(in_n) = out_n \]
 if \(n \in \text{pred}(m) \) then \(out_n \leq in_m \)
Proof

• **Base case:** p is of length 1
 – Then $p = n_0$ and $f_p(\bot) = \bot = \text{in}_{n_0}$

• **Induction step:**
 – Assume theorem for all paths of length k
 Show for an arbitrary path p of length $k+1$
Induction Step Proof

- \(p = n_0, \ldots, n_k, n \)
- Must show \(f_k(f_{k-1}(\ldots f_{n_1}(f_{n_0}(\bot)) \ldots)) \leq \text{in}_n \)
 - By induction \((f_{k-1}(\ldots f_{n_1}(f_{n_0}(\bot)) \ldots)) \leq \text{in}_{nk} \)
 - Apply \(f_k \) to both sides, by monotonicity we get \(f_k(f_{k-1}(\ldots f_{n_1}(f_{n_0}(\bot)) \ldots)) \leq f_k(\text{in}_{nk}) \)
 - By lemma, \(f_k(\text{in}_{nk}) = \text{out}_{nk} \)
 - By lemma, \(\text{out}_{nk} \leq \text{in}_n \)
 - By transitivity, \(f_k(f_{k-1}(\ldots f_{n_1}(f_{n_0}(\bot)) \ldots)) \leq \text{in}_n \)
Distributivity

• Distributivity preserves precision
• If framework is distributive, then worklist algorithm produces the meet over paths solution
 – For all \(n \):
 \[
 \bigvee \{ f_p(\bot) \cdot p \text{ is a path to } n \} = \text{in}_n
 \]
Lack of Distributivity Example

- Constant Calculator
- Flat Lattice on Integers

![Diagram of lattice structure with values -2, -1, 0, 1, 2, ...]

- Actual lattice records a value for each variable
 - Example element: [a→3, b→2, c→5]
Transfer Functions

• If n of the form $v = c$

 $f_n(x) = x[v \rightarrow c]$

• If n of the form $v_1 = v_2 + v_3$

 $f_n(x) = x[v_1 \rightarrow x[v_2] + x[v_3]]$

• Lack of distributivity

 Consider transfer function f for $c = a + b$

 $f([a \rightarrow 3, b \rightarrow 2]) \lor f([a \rightarrow 2, b \rightarrow 3]) = [a \rightarrow \text{TOP}, b \rightarrow \text{TOP}, c \rightarrow 5]$

 $f([a \rightarrow 3, b \rightarrow 2] \lor [a \rightarrow 2, b \rightarrow 3]) = f([a \rightarrow \text{TOP}, b \rightarrow \text{TOP}]) = [a \rightarrow \text{TOP}, b \rightarrow \text{TOP}, c \rightarrow \text{TOP}]$
Lack of Distributivity Anomaly

\[a = 2 \quad b = 3 \]
\[a = 3 \quad b = 2 \]

\[[a \rightarrow 2, \ b \rightarrow 3] \quad [a \rightarrow 3, \ b \rightarrow 2] \]

\[[a \rightarrow \text{TOP}, \ b \rightarrow \text{TOP}] \]
\[c = a + b \]

Lack of Distributivity Imprecision:
\[[a \rightarrow \text{TOP}, \ b \rightarrow \text{TOP}, \ c \rightarrow 5] \text{ more precise} \]

\[[a \rightarrow \text{TOP}, \ b \rightarrow \text{TOP}, \ c \rightarrow \text{TOP}] \]

What is the meet over all paths solution?
How to Make Analysis Distributive

- Keep combinations of values on different paths

$$a = 2 \quad a = 3$$
$$b = 3 \quad b = 2$$

$$\{[a\rightarrow 2, \, b\rightarrow 3]\} \quad \{[a\rightarrow 3, \, b\rightarrow 2]\}$$

$$c = a+b$$

$$\{[a\rightarrow 2, \, b\rightarrow 3, \, c\rightarrow 5], \, [a\rightarrow 3, \, b\rightarrow 2, \, c\rightarrow 5]\}$$
Issues

• Basically simulating all combinations of values in all executions
 – Exponential blowup
 – Nontermination because of infinite ascending chains
• Nontermination solution
 – Use widening operator to eliminate blowup
 (can make it work at granularity of variables)
 – Loses precision in many cases
Multiple Fixed Points

- Dataflow analysis generates least fixed point
- May be multiple fixed points
- Available expressions example

```
a = x + y

i = 0

b = x + y;
nop
```

```
a = x + y

i == 0

b = x + y;
nop
```
Pessimistic vs. Optimistic Analyses

- Available expressions is optimistic (for common sub-expression elimination)
 - Assumes expressions are available at start of analysis
 - Analysis eliminates all that are not available
 - If analysis result \(\text{in}_n \leq \text{e} \), can use \(\text{e} \) for CSE
 - Cannot stop analysis early and use current result

- Live variables is pessimistic (for dead code elimination)
 - Assumes all variables are live at start of analysis
 - Analysis finds variables that are dead
 - If \(\text{e} \leq \text{analysis result} \text{in}_n \), can use \(\text{e} \) for dead code elimination
 - Can stop analysis early and use current result

- Formal dataflow setup same for both analyses
- Optimism/pessimism depends on intended use
Summary

• Formal dataflow analysis framework
 – Lattices, partial orders
 – Transfer functions, joins and splits
 – Dataflow equations and fixed point solutions

• Connection with program
 – Abstraction function $AF: S \rightarrow P$
 – For any state s and program point n, $AF(s) \leq in_n$
 – Meet over all paths solutions, distributivity
6.035 Computer Language Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.