

Parallelization

Saman Amarasinghe

Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology

Outline

- Why Parallelism
- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities

Moore's Law

Number of Transistors

Uniprocessor Performance (SPECint)

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Multicores Are Here!

Issues with Parallelism

- Amdhal's Law
 - Any computation can be analyzed in terms of a portion that must be executed sequentially, Ts, and a portion that can be executed in parallel, Tp. Then for n processors:
 - T(n) = Ts + Tp/n
 - $T(\infty) = Ts$, thus maximum speedup (Ts + Tp) /Ts
- Load Balancing
 - The work is distributed among processors so that *all* processors are kept busy when parallel task is executed.
- Granularity
 - The size of the parallel regions between synchronizations or the ratio of computation (useful work) to communication (overhead).

Outline

- Why Parallelism
- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities

Types of Parallelism

 Instruction Level Parallelism (ILP)

 \rightarrow Scheduling and Hardware

 Task Level Parallelism (TLP) \rightarrow Mainly by hand

- Loop Level Parallelism (LLP) or Data Parallelism
- Pipeline Parallelism
- Divide and Conquer Parallelism

- \rightarrow Hand or Compiler Generated
- \rightarrow Hardware or Streaming
- \rightarrow Recursive functions

Why Loops?

- 90% of the execution time in 10% of the code
 Mostly in loops
- If parallel, can get good performance
 Load balancing
- Relatively easy to analyze

Programmer Defined Parallel Loop

- FORALL
 - No "loop carried dependences"
 - Fully parallel

- FORACROSS
 - Some "loop carried dependences"

Parallel Execution

• Example FORPAR I = 0 to N

A[I] = A[I] + 1

- Block Distribution: Program gets mapped into Iters = ceiling(N/NUMPROC);
 FOR P = 0 to NUMPROC-1
 FOR I = P*Iters to MIN((P+1)*Iters, N)
 A[I] = A[I] + 1
- SPMD (Single Program, Multiple Data) Code
 If(myPid == 0) {

```
...
Iters = ceiling(N/NUMPROC);
Barrier();
FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)
        A[I] = A[I] + 1
Barrier();
```

Parallel Execution

• Example

FORPAR I = 0 to N A[I] = A[I] + 1

• Block Distribution: Program gets mapped into

```
Iters = ceiling(N/NUMPROC);
FOR P = 0 to NUMPROC-1
FOR I = P*Iters to MIN((P+1)*Iters, N)
        A[I] = A[I] + 1
```

```
    Code fork a function
```

```
Iters = ceiling(N/NUMPROC);
ParallelExecute(func1);
...
void func1(integer myPid)
{
   FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)
        A[I] = A[I] + 1
}
```

Parallel Execution

SPMD

- Need to get all the processors execute the control flow
 - Extra synchronization overhead or redundant computation on all processors or both
- Stack: Private or Shared?
- Fork
 - Local variables not visible within the function
 - Either make the variables used/defined in the loop body global or pass and return them as arguments
 - Function call overhead

Parallel Thread Basics

- Create separate threads
 - Create an OS thread
 - (hopefully) it will be run on a separate core
 - pthread_create(&thr, NULL, &entry_point, NULL)
 - Overhead in thread creation
 - Create a separate stack
 - Get the OS to allocate a thread
- Thread pool
 - Create all the threads (= num cores) at the beginning
 - Keep N-1 idling on a barrier, while sequential execution
 - Get them to run parallel code by each executing a function
 - Back to the barrier when parallel region is done

Outline

- Why Parallelism
- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities

Parallelizing Compilers

Finding FORALL Loops out of FOR loops

• Examples

FOR I = 0 to 5 A[I] = A[I] + 1

```
FOR I = 0 to 5
A[I] = A[I+6] + 1
```

```
For I = 0 to 5
A[2*I] = A[2*I + 1] + 1
```

- N deep loops \rightarrow n-dimensional discrete cartesian space
 - Normalized loops: assume step size = 1

Iterations are represented as coordinates in iteration space
 i - [i₁, i₂, i₃,..., i_n]

- N deep loops \rightarrow n-dimensional discrete cartesian space
 - Normalized loops: assume step size = 1

- Iterations are represented as coordinates in iteration space
- Sequential execution order of iterations → Lexicographic order
 [0,0], [0,1], [0,2], ..., [0,6], [0,7],
 [1,1], [1,2], ..., [1,6], [1,7],
 [2,2], ..., [2,6], [2,7],
 [6,6], [6,7],
 [6,6], [6,7],
 [6,7],
 [6,7],
 [6,6], [6,7],
 [6,7],
 [1,1],
 [1,1],
 [1,2],
 [1,2],
 [1,2],
 [1,2],
 [1,6],
 [1,7],
 [1,6],
 [1,7],
 [2,2],
 [2,6],
 [2,7],
 [2,7],
 [2,2],
 [2,6],
 [2,7],
 [2,7],
 [2,6],
 [2,7],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,7],
 [2,6],
 [2,6],
 [2,7],
 [2,6],
 [2,6],
 [2,6],
 [2,6],
 [2

- N deep loops \rightarrow n-dimensional discrete cartesian space
 - Normalized loops: assume step size = 1

- Iterations are represented as coordinates in iteration space
- Sequential execution order of iterations → Lexicographic order
- Iteration i is lexicograpically less than j, i < j iff there exists c s.t. i₁ = j₁, i₂ = j₂,... i_{c-1} = j_{c-1} and i_c < j_c

- N deep loops \rightarrow n-dimensional discrete cartesian space
 - Normalized loops: assume step size = 1

- An affine loop nest
 - Loop bounds are integer linear functions of constants, loop constant variables and outer loop indexes
 - Array accesses are integer linear functions of constants, loop constant variables and loop indexes

- N deep loops \rightarrow n-dimensional discrete cartesian space
 - Normalized loops: assume step size = 1

Affine loop nest → Iteration space as a set of liner inequalities

 0 ≤ I
 I ≤ 6
 I ≤ J
 J ≤ 7

Data Space

M dimensional arrays → m-dimensional discrete cartesian space
 a hypercube

Integer A(10)	0	1	2	3	4	5	6	7	8	9

Float B(5, 6)

Dependences

• True dependence

a =

= a

- Anti dependence
 - = a
 - a =
- Output dependence
 - a a
- Definition:

Data dependence exists for a dynamic instance i and j iff

- either i or j is a write operation
- i and j refer to the same variable
- i executes before j
- How about array accesses within loops?

Outline

- Why Parallelism
- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities

FOR I = 0 to 5

A[I] = A[I] + 1

Iteration Space	Data Space
0 1 2 3 4 5	0 1 2 3 4 5 6 7 8 9 10 111

Array Accesses in a loop FOR I = 0 to 5 A[I] = A[I] + 1

	Iteration Space										Data Space									
	0	1	2	3	4	5		0 □-	1	2	3	4	5	6	7	8	9	10	111	.2
= A[I] A[I]																				
- A[I] A[I]																				
= A[I] A[I]										ł										
= A[I] A[I]																				
= A[I] A[I]																				
= A[I] A[I] _{Saman Amarasinghe}							26								6.03		©MI	1	2006	

FOR I = 0 to 5 A[I+1] = A[I] + 1

	Ite	ratio	on S	Spa	ce
0	1	2	3	4	5
<u> </u>					-0

	Data Space														
0	1	2	3	4	5	6	7	8	9	10	11	12			
—		0-		0						0					

FOR I = 0 to 5

A[I] = A[I+2] + 1

		Ite	rati	on S	Spa	ce Data Space													
	0	1	2	3	4	5	0 ┏-	1	2	3	4	5	6	7	8	9	10	111	.2
= A[I+2] A[I]																			
- A[I+2] A[I]																			
= A[I+2] A[I]									Ľ										
= A[I+2] A[I]												1							
= A[I+2] A[I]																			
= A[I+2] A[I] _{Saman Amarasinghe}						28								6.03		©MI		1 2006	

FOR I = 0 to 5

A[2*I] = A[2*I+1] + 1

Distance Vectors

 A loop has a distance d if there exist a data dependence from iteration i to j and d = j-i

Multi-Dimensional Dependence

Multi-Dimensional Dependence

dv =

Outline

- Dependence Analysis
- Increasing Parallelization Opportunities

What is the Dependence?

What is the Dependence?

What is the Dependence?

What is the Dependence?

FOR I = 1 to n FOR J = 1 to n A[I] = A[I-1] + 1

What is the Dependence?

.035 ©MIT Fall 2006

Saman Amarasinghe

What is the Dependence?

Saman Amarasinghe

Recognizing FORALL Loops

- For every pair of array acceses to the same array
 - If the first access has at least one dynamic instance (an iteration) in which it refers to a location in the array that the second access also refers to in at least one of the later dynamic instances (iterations).
 - Then there is a data dependence between the statements
- (Note that same array can refer to itself output dependences)

Definition

- Loop-carried dependence: dependence that crosses a loop boundary
- ⁻ If there are no loop carried dependences \rightarrow parallelizable

Data Dependence Analysis

- I: Distance Vector method
- II: Integer Programming

Distance Vector Method

• The ith loop is parallelizable for all dependence $d = [d_1, ..., d_i, ...d_n]$ either one of $d_1, ..., d_{i-1}$ is > 0 or all $d_1, ..., d_i = 0$

Is the Loop Parallelizable?

Are the Loops Parallelizable?

No Yes

dv =

Are the Loops Parallelizable?

$$dv = \begin{bmatrix} 1 \\ * \end{bmatrix}$$

Integer Programming Method

• Example

FOR I = 0 to 5
 A[I+1] = A[I] + 1

- Is there a loop-carried dependence between A[I+1] and A[I]
 - Is there two distinct iterations i_w and i_r such that A[i_w+1] is the same location as A[i_r]

 $- \exists \text{ integers } i_w, i_r \quad 0 \leq i_w, i_r \leq 5 \quad i_w \neq i_r \quad i_w + 1 = i_r$

- Is there a dependence between A[I+1] and A[I+1]
 - Is there two distinct iterations i_1 and i_2 such that A[i_1+1] is the same location as A[i_2+1]

 $- \exists \text{ integers } i_1, i_2 \qquad 0 \leq i_1, i_2 \leq 5 \qquad i_1 \neq i_2 \qquad i_1 + 1 = i_2 + 1$

Integer Programming Method

FOR I = 0 to 5
 A[I+1] = A[I] + 1

- Formulation
 - $\exists an integer vector i such that Âi ≤ b where A is an integer matrix and b is an integer vector$

Iteration Space

FOR I = 0 to 5 A[I+1] = A[I] + 1

 N deep loops → n-dimensional discrete cartesian space

 Affine loop nest → Iteration space as a set of liner inequalities

 $0 \le I$ $I \le 6$ $I \le J$ $J \le 7$

Integer Programming Method

FOR I = 0 to 5 A[I+1] = A[I] + 1

- Formulation
 - $\exists an integer vector i such that Âi ≤ b where A is an integer matrix and b is an integer vector$
- Our problem formulation for A[i] and A[i+1]
 ∃ integers i_w, i_r 0 ≤ i_w, i_r ≤ 5 i_w ≠ i_r i_w+1 = i_r
 - $-i_w \neq i_r$ is not an affine function
 - divide into 2 problems
 - Problem 1 with $i_w < i_r$ and problem 2 with $i_r < i_w$
 - If either problem has a solution \rightarrow there exists a dependence
 - How about $i_w + 1 = i_r$
 - Add two inequalities to single problem

$$i_w + 1 \le i_r$$
, and $i_r \le i_w + 1$

Integer Programming Formulation

FOR I = 0 to 5 A[I+1] = A[I] + 1

- Problem 1
 - $\begin{array}{l} 0 \leq i_{w} \\ i_{w} \leq 5 \\ 0 \leq i_{r} \\ i_{r} \leq 5 \\ i_{w} \leq i_{r} \\ i_{w} + 1 \leq i_{r} \\ i_{w} + 1 \leq i_{r} \\ i_{r} \leq i_{w} + 1 \end{array}$

Integer Programming Formulation

• Problem 1

FOR I = 0 to 5 A[I+1] = A[I] + 1

Integer Programming Formulation

- Problem 51

• and problem 2 with $i_r < i_w$

Generalization

- An affine loop nest
 FOR i₁ = f₁₁(c₁...c_k) to I_{u1}(c₁...c_k)
 FOR i₂ = f₁₂(i₁, c₁...c_k) to I_{u2}(i₁, c₁...c_k)

 FOR i_n = f_{1n}(i₁...i_{n-1}, c₁...c_k) to I_{un}(i₁...i_{n-1}, c₁...c_k)
 A[f_{a1}(i₁...i_n, c₁...c_k), f_{a2}(i₁...i_n, c₁...c_k), ..., f_{am}(i₁...i_n, c₁...c_k)]
- Solve 2*n problems of the form

•
$$\mathbf{i}_1 = \mathbf{j}_1$$
, $\mathbf{i}_2 = \mathbf{j}_2$,..... $\mathbf{i}_{n-1} = \mathbf{j}_{n-1}$, $\mathbf{i}_n < \mathbf{j}$
• $\mathbf{i}_1 = \mathbf{j}_1$, $\mathbf{i}_2 = \mathbf{j}_2$,..... $\mathbf{i}_{n-1} = \mathbf{j}_{n-1}$, $\mathbf{j}_n < \mathbf{i}$
• $\mathbf{i}_1 = \mathbf{j}_1$, $\mathbf{i}_2 = \mathbf{j}_2$,..... $\mathbf{i}_{n-1} < \mathbf{j}_{n-1}$
• $\mathbf{i}_1 = \mathbf{j}_1$, $\mathbf{i}_2 = \mathbf{j}_2$,..... $\mathbf{j}_{n-1} < \mathbf{i}_{n-1}$

•
$$i_1 = j_1, i_2 < j_2$$

• $i_1 = i_1 + i_2 < j_2$

•
$$i_1 < j_1$$

Outline

- Why Parallelism
- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities

Increasing Parallelization Opportunities

- Scalar Privatization
- Reduction Recognition
- Induction Variable Identification
- Array Privatization
- Loop Transformations
- Granularity of Parallelism
- Interprocedural Parallelization

Scalar Privatization

• Example

- FOR i = 1 to n
 X = A[i] * 3;
 B[i] = X;
- Is there a loop carried dependence? What is the type of dependence?

Privatization

- Analysis:
 - Any anti- and output- loop-carried dependences
- Eliminate by assigning in local context
 FOR i = 1 to n
 integer Xtmp;
 [i] * 3;
 B[i] = Xtmp;
- Eliminate by expanding into an array
 FOR i = 1 to n
 Xtmp[i] = A[i] * 3;
 B[i] = Xtmp[i];

Privatization

- Need a final assignment to maintain the correct value after the loop nest
- Eliminate by assigning in local context

```
FOR i = 1 to n
integer Xtmp;
Xtmp = A[i] * 3;
B[i] = Xtmp;
if(i == n) X = Xtmp
```

• Eliminate by expanding into an array

```
FOR i = 1 to n
    Xtmp[i] = A[i] * 3;
    B[i] - Xtmp[i];
```

```
X = Xtmp[n];
```

Another Example

- How about loop-carried true dependences?
 - Example
 - FOR i = 1 to n

X = X + A[i];

• Is this loop parallelizable?

Reduction Recognition

• Reduction Analysis:

Only associative operations

The result is never used within the loop

Transformation

```
Integer Xtmp[NUMPROC];
Barrier();
FOR i = myPid*Iters to MIN((myPid+1)*Iters, n)
        Xtmp[myPid] = Xtmp[myPid] + A[i];
Barrier();
If(myPid == 0) {
   FOR p = 0 to NUMPROC-1
        X = X + Xtmp[p];
```

...

Induction Variables

• Example

FOR i = 0 to N

 $A[i] = 2^{i};$

After strength reduction

- t = 1
 FOR i = 0 to N
 A[i] = t;
 t = t*2;
- What happened to loop carried dependences?
- Need to do opposite of this!
 - Perform induction variable analysis
 - Rewrite IVs as a function of the loop variable

Array Privatization

- Similar to scalar privatization
- However, analysis is more complex
 - Array Data Dependence Analysis: Checks if two iterations access the same location
 - Array Data Flow Analysis:
 Checks if two iterations access the same value
- Transformations
 - Similar to scalar privatization
 - Private copy for each processor or expand with an additional dimension

Loop Transformations

- A loop may not be parallel as is
- Example

FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,j] = A[i,j-1] + A[i-1,j];

Loop Transformations

- A loop may not be parallel as is
- Example

FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,j] = A[i,j-1] + A[i-1,j];

Granularity of Parallelism

• Example

FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,j] = A[i,j] + A[i-1,j];

• Gets transformed into

```
FOR i = 1 to N-1
Barrier();
FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)
A[i,j] = A[i,j] + A[i-1,j];
Barrier();
```

- Inner loop parallelism can be expensive
 - Startup and teardown overhead of parallel regions
 - Lot of synchronization
 - Can even lead to slowdowns

Granularity of Parallelism

• Inner loop parallelism can be expensive

Solutions

 Don't parallelize if the amount of work within the loop is too small

or

– Transform into outer-loop parallelism

Outer Loop Parallelism

• Example

FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,j] = A[i,j] + A[i-1,j];

After Loop Transpose

FOR j = 1 to N-1
FOR i = 1 to N-1
A[i,j] = A[i,j] + A[i-1,j];

• Get mapped into

```
Barrier();
FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)
FOR i = 1 to N-1
A[i,j] = A[i,j] + A[i-1,j];
Barrier();
```


Unimodular Transformations

- Interchange, reverse and skew
- Use a matrix transformation $I_{new} = A I_{old}$
- Interchange

Skew

$$\begin{bmatrix} i_{new} \\ j_{new} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} i_{old} \\ j_{old} \end{bmatrix}$$

$$\begin{bmatrix} i_{new} \\ j_{new} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i_{old} \\ j_{old} \end{bmatrix}$$

$$\begin{bmatrix} i_{new} \\ j_{new} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i_{old} \\ j_{old} \end{bmatrix}$$

aman Amarasinghe

Legality of Transformations

 Unimodular transformation with matrix A is valid iff.
 For all dependence vectors v the first non-zero in Av is positive

Interprocedural Parallelization

- Function calls will make a loop unparallelizatble
 - Reduction of available parallelism
 - A lot of inner-loop parallelism
- Solutions
 - Interprocedural Analysis
 - Inlining

Interprocedural Parallelization

Issues

- Same function reused many times
- Analyze a function on each trace \rightarrow Possibly exponential
- Analyze a function once \rightarrow unrealizable path problem

Interprocedural Analysis

- Need to update all the analysis
- Complex analysis
- Can be expensive

• Inlining

- Works with existing analysis
- Large code bloat \rightarrow can be very expensive

Summary

- Multicores are here
 - Need parallelism to keep the performance gains
 - Programmer defined or compiler extracted parallelism
- Automatic parallelization of loops with arrays
 - Requires Data Dependence Analysis
 - Iteration space & data space abstraction
 - An integer programming problem
- Many optimizations that'll increase parallelism
MIT OpenCourseWare http://ocw.mit.edu

6.035 Computer Language Engineering Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.