Parallelization

Saman Amarasinghe
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Outline

• Why Parallelism
• Parallel Execution
• Parallelizing Compilers
• Dependence Analysis
• Increasing Parallelization Opportunities
Moore’s Law

Number of Transistors

Performance (vs. VAX-11/780)

Saman Amarasinghe
Uniprocessor Performance (SPECint)

Issues with Parallelism

• Amdhal’s Law
 – Any computation can be analyzed in terms of a portion that must be executed sequentially, T_s, and a portion that can be executed in parallel, T_p. Then for n processors:
 – $T(n) = T_s + T_p/n$
 – $T(\infty) = T_s$, thus maximum speedup $(T_s + T_p) / T_s$

• Load Balancing
 – The work is distributed among processors so that all processors are kept busy when parallel task is executed.

• Granularity
 – The size of the parallel regions between synchronizations or the ratio of computation (useful work) to communication (overhead).
Outline

• Why Parallelism
• Parallel Execution
• Parallelizing Compilers
• Dependence Analysis
• Increasing Parallelization Opportunities
Types of Parallelism

- Instruction Level Parallelism (ILP) → Scheduling and Hardware
- Task Level Parallelism (TLP) → Mainly by hand
- Loop Level Parallelism (LLP) or Data Parallelism → Hand or Compiler Generated
- Pipeline Parallelism → Hardware or Streaming
- Divide and Conquer Parallelism → Recursive functions
Why Loops?

• 90% of the execution time in 10% of the code
 – Mostly in loops

• If parallel, can get good performance
 – Load balancing

• Relatively easy to analyze
Programmer Defined Parallel Loop

- FORALL
 - No “loop carried dependences”
 - Fully parallel

- FORACROSS
 - Some “loop carried dependences”
Parallel Execution

- Example

  ```c
  FORPAR I = 0 to N
  ```

- Block Distribution: Program gets mapped into

  ```c
  Iters = ceiling(N/NUMPROC);
  FOR P = 0 to NUMPROC-1
      FOR I = P*Iters to MIN((P+1)*Iters, N)
  ```

- SPMD (Single Program, Multiple Data) Code

  ```c
  If(myPid == 0) {
      ...
      Iters = ceiling(N/NUMPROC);
  }
  Barrier();
  FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)
  Barrier();
  ```
Parallel Execution

- **Example**

  ```
  FORPAR I = 0 to N
  ```

- **Block Distribution**: Program gets mapped into

  ```
  Iters = ceiling(N/NUMPROC);
  FOR P = 0 to NUMPROC-1
      FOR I = P*Iters to MIN((P+1)*Iters, N)
  ```

- **Code fork a function**

  ```
  Iters = ceiling(N/NUMPROC);
  ParallelExecute(func1);
  ...
  void func1(integer myPid)
  {
      FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)
  }
  ```
Parallel Execution

• SPMD
 – Need to get all the processors execute the control flow
 • Extra synchronization overhead or redundant computation on all processors or both
 – Stack: Private or Shared?

• Fork
 – Local variables not visible within the function
 • Either make the variables used/defined in the loop body global or pass and return them as arguments
 • Function call overhead
Parallel Thread Basics

• Create separate threads
 – Create an OS thread
 • (hopefully) it will be run on a separate core
 – pthread_create(&thr, NULL, &entry_point, NULL)
 – Overhead in thread creation
 • Create a separate stack
 • Get the OS to allocate a thread

• Thread pool
 – Create all the threads (= num cores) at the beginning
 – Keep N-1 idling on a barrier, while sequential execution
 – Get them to run parallel code by each executing a function
 – Back to the barrier when parallel region is done
Outline

• Why Parallelism
• Parallel Execution

• Parallelizing Compilers
• Dependence Analysis
• Increasing Parallelization Opportunities
Parallelizing Compilers

• Finding FORALL Loops out of FOR loops

• Examples

 FOR I = 0 to 5

 FOR I = 0 to 5

 For I = 0 to 5
Iteration Space

- N deep loops \rightarrow n-dimensional discrete cartesian space
 - Normalized loops: assume step size = 1

```
FOR I = 0 to 6
    FOR J = I to 7
```

- Iterations are represented as coordinates in iteration space
 - $\vec{i} = [i_1, i_2, i_3,..., i_n]$
Iteration Space

- N deep loops \rightarrow n-dimensional discrete cartesian space
 - Normalized loops: assume step size = 1

FOR $I = 0$ to 6
 FOR $J = I$ to 7

- Iterations are represented as coordinates in iteration space
- Sequential execution order of iterations \Rightarrow Lexicographic order

$[0,0], [0,1], [0,2], ..., [0,6], [0,7],$
$[1,1], [1,2], ..., [1,6], [1,7],$
$[2,2], ..., [2,6], [2,7],$
\ldots
$[6,6], [6,7],$
Iteration Space

• N deep loops \rightarrow n-dimensional discrete cartesian space
 - Normalized loops: assume step size = 1

```
FOR I = 0 to 6
  FOR J = I to 7
```

• Iterations are represented as coordinates in iteration space
• Sequential execution order of iterations \Rightarrow Lexicographic order
• Iteration \vec{i} is lexicographically less than \vec{j}, $\vec{i} < \vec{j}$ iff
 there exists c s.t. $i_1 = j_1$, $i_2 = j_2$, ..., $i_{c-1} = j_{c-1}$ and $i_c < j_c$
Iteration Space

- N deep loops \rightarrow n-dimensional discrete cartesian space
 - Normalized loops: assume step size = 1

```
FOR I = 0 to 6
    FOR J = I to 7
```

- An affine loop nest
 - Loop bounds are integer linear functions of constants, loop constant variables and outer loop indexes
 - Array accesses are integer linear functions of constants, loop constant variables and loop indexes
Iteration Space

- N deep loops \rightarrow n-dimensional discrete cartesian space
 - Normalized loops: assume step size = 1

```
FOR I = 0 to 6
  FOR J = I to 7
```

- Affine loop nest \rightarrow Iteration space as a set of linear inequalities

 $0 \leq I$
 $I \leq 6$
 $I \leq J$
 $J \leq 7$
Data Space

- M dimensional arrays \rightarrow m-dimensional discrete cartesian space
 - a hypercube

Integer $A(10)$

Float $B(5, 6)$
Dependences

- True dependence
 \[a = a \]

- Anti dependence
 \[a = a \]

- Output dependence
 \[a = a \]

- Definition:
 Data dependence exists for a dynamic instance \(i \) and \(j \) iff
 - either \(i \) or \(j \) is a write operation
 - \(i \) and \(j \) refer to the same variable
 - \(i \) executes before \(j \)

- How about array accesses within loops?
Outline

• Why Parallelism
• Parallel Execution
• Parallelizing Compilers
• Dependence Analysis
• Increasing Parallelization Opportunities
Array Accesses in a loop

FOR I = 0 to 5
Array Accesses in a loop

FOR I = 0 to 5
Array Accesses in a loop

FOR I = 0 to 5
Array Accesses in a loop

FOR I = 0 to 5

<table>
<thead>
<tr>
<th>I</th>
<th>A[I]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A[I+2]</td>
</tr>
<tr>
<td>1</td>
<td>- A[I+2]</td>
</tr>
<tr>
<td>2</td>
<td>= A[I+2]</td>
</tr>
<tr>
<td>3</td>
<td>= A[I+2]</td>
</tr>
<tr>
<td>4</td>
<td>= A[I+2]</td>
</tr>
<tr>
<td>5</td>
<td>= A[I+2]</td>
</tr>
<tr>
<td>6</td>
<td>= A[I+2]</td>
</tr>
<tr>
<td>7</td>
<td>= A[I+2]</td>
</tr>
<tr>
<td>8</td>
<td>= A[I+2]</td>
</tr>
<tr>
<td>9</td>
<td>= A[I+2]</td>
</tr>
<tr>
<td>10</td>
<td>= A[I+2]</td>
</tr>
<tr>
<td>11</td>
<td>= A[I+2]</td>
</tr>
</tbody>
</table>
Array Accesses in a loop

FOR I = 0 to 5
Distance Vectors

- A loop has a distance \(d \) if there exist a data dependence from iteration \(i \) to \(j \) and \(d = j-i \)

\[
\begin{align*}
\text{\(dv = [0] \)} & \quad \text{FOR } I = 0 \text{ to } 5 \\
& \quad A[I] = A[I] + 1 \\
\text{\(dv = [1] \)} & \quad \text{FOR } I = 0 \text{ to } 5 \\
& \quad A[I+1] = A[I] + 1 \\
\text{\(dv = [2] \)} & \quad \text{FOR } I = 0 \text{ to } 5 \\
\text{\(dv = [1], [2] \ldots = [*] \)} & \quad \text{FOR } I = 0 \text{ to } 5 \\
& \quad A[I] = A[0] + 1
\end{align*}
\]
Multi-Dimensional Dependence

FOR $I = 1$ to n
 FOR $J = 1$ to n

$dv = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
Multi-Dimensional Dependence

FOR I = 1 to n
 FOR J = 1 to n

\[dv = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \]

FOR I = 1 to n
 FOR J = 1 to n

\[dv = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \]
Outline

• Dependence Analysis
• Increasing Parallelization Opportunities
What is the Dependence?

FOR $I = 1$ to n

FOR $J = 1$ to n

What is the Dependence?

FOR $I = 1$ to n
FOR $J = 1$ to n
What is the Dependence?

FOR $I = 1$ to n
FOR $J = 1$ to n

\[dv = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \]
What is the Dependence?

FOR I = 1 to n
 FOR J = 1 to n

FOR I = 1 to n
 FOR J = 1 to n
What is the Dependence?

FOR $I = 1$ to n
 FOR $J = 1$ to n (with arrow symbol)

$dv = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

FOR $I = 1$ to n
 FOR $J = 1$ to n
 $B[I] = B[I-1] + 1$

$dv = \begin{bmatrix} 1 \\ -1 \\ -2 \\ -3 \\ \cdots \end{bmatrix}^*$
What is the Dependence?

```plaintext
FOR i = 1 to N-1
    FOR j = 1 to N-1
```

\[
dv = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}
\]
Recognizing FORALL Loops

- For every pair of array accesses to the same array

 If the first access has at least one dynamic instance (an iteration) in which it refers to a location in the array that the second access also refers to in at least one of the later dynamic instances (iterations).

 Then there is a data dependence between the statements

- (Note that same array can refer to itself – output dependences)

• Definition

 - Loop-carried dependence:
 dependence that crosses a loop boundary

 - If there are no loop carried dependences \(\rightarrow \) parallelizable
Data Dependence Analysis

- I: Distance Vector method
- II: Integer Programming
The i^{th} loop is parallelizable for all dependence $d = [d_1, \ldots, d_i, \ldots d_n]$ either
one of d_1, \ldots, d_{i-1} is > 0

or

all $d_1, \ldots, d_i = 0$
Is the Loop Parallelizable?

- \(dv = [0] \)
 - Yes
 - FOR I = 0 to 5

- \(dv = [1] \)
 - No
 - FOR I = 0 to 5

- \(dv = [2] \)
 - No
 - FOR I = 0 to 5

- \(dv = [*] \)
 - No
 - FOR I = 0 to 5
 - A[I] = A[0] + 1
Are the Loops Parallelizable?

FOR I = 1 to n
 FOR J = 1 to n

$dv = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Yes
No

FOR I = 1 to n
 FOR J = 1 to n

$dv = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

No
Yes
Are the Loops Parallelizable?

FOR $I = 1$ to n

FOR $J = 1$ to n

$dv = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

No

Yes

FOR $I = 1$ to n

FOR $J = 1$ to n

$B[I] = B[I-1] + 1$

$dv = \begin{bmatrix} 1 \\ * \end{bmatrix}$

No

Yes
Integer Programming Method

- **Example**
  ```
  FOR I = 0 to 5
  ```

- **Is there a loop-carried dependence between A[I+1] and A[I]**
 - Is there two distinct iterations i_w and i_r such that $A[i_w+1]$ is the same location as $A[i_r]$?
 - \exists integers $i_w, i_r \ 0 \leq i_w, i_r \leq 5 \ i_w \neq i_r \ i_w + 1 = i_r$

- **Is there a dependence between A[I+1] and A[I+1]**
 - Is there two distinct iterations i_1 and i_2 such that $A[i_1+1]$ is the same location as $A[i_2+1]$?
 - \exists integers $i_1, i_2 \ 0 \leq i_1, i_2 \leq 5 \ i_1 \neq i_2 \ i_1 + 1 - i_2 + 1$
Integer Programming Method

• Formulation

 – \(\exists \) an integer vector \(\bar{i} \) such that \(\bar{A} \bar{i} \leq \bar{b} \) where

 \(\bar{A} \) is an integer matrix and \(\bar{b} \) is an integer vector

\[
\text{FOR I = 0 to 5}
\]
\[
\]
Iteration Space

FOR I = 0 to 5

- N deep loops → n-dimensional discrete cartesian space

- Affine loop nest → Iteration space as a set of linear inequalities
 0 ≤ I
 I ≤ 6
 I ≤ J
 J ≤ 7
Integer Programming Method

FOR I = 0 to 5

\[A[I+1] = A[I] + 1 \]

- **Formulation**

 \[\exists \text{ an integer vector } \bar{i} \text{ such that } \bar{A} \bar{i} \leq \bar{b} \text{ where } \]

 \[\bar{A} \] is an integer matrix and \(\bar{b} \) is an integer vector

- Our problem formulation for \(A[i] \) and \(A[i+1] \)

 \[\exists \text{ integers } i_w, i_r \quad 0 \leq i_w, i_r \leq 5 \quad i_w \neq i_r \quad i_w + 1 = i_r \]

 - \(i_w \neq i_r \) is not an affine function

 - divide into 2 problems
 - Problem 1 with \(i_w < i_r \) and problem 2 with \(i_r < i_w \)
 - If either problem has a solution \(\rightarrow \) there exists a dependence

- How about \(i_w + 1 = i_r \)

 - Add two inequalities to single problem

 \[i_w + 1 \leq i_r, \text{ and } i_r \leq i_w + 1 \]
Integer Programming Formulation

• Problem 1

\[
\begin{align*}
0 & \leq i_w \\
i_w & \leq 5 \\
0 & \leq i_r \\
i_r & \leq 5 \\
i_w & < i_r \\
i_w + 1 & \leq i_r \\
i_r & \leq i_w + 1
\end{align*}
\]

FOR I = 0 to 5

\[
\]
Integer Programming Formulation

Problem 1

FOR I = 0 to 5

\[A[I+1] = A[I] + 1 \]

- 0 \(\leq i_w \) \(\rightarrow \) \(-i_w \leq 0 \)
- \(i_w \leq 5 \) \(\rightarrow \) \(i_w \leq 5 \)
- 0 \(\leq i_r \) \(\rightarrow \) \(-i_r \leq 0 \)
- \(i_r \leq 5 \) \(\rightarrow \) \(i_r \leq 5 \)
- \(i_w < i_r \) \(\rightarrow \) \(i_w - i_r \leq -1 \)
- \(i_w + 1 \leq i_r \) \(\rightarrow \) \(i_w - i_r \leq -1 \)
- \(i_r \leq i_w + 1 \) \(\rightarrow \) \(-i_w + i_r \leq 1 \)
Integer Programming Formulation

- **Problem 51**

 \[
 \begin{align*}
 0 & \leq i_w \Rightarrow -i_w & \leq 0 & \begin{pmatrix} -1 & 0 \end{pmatrix} & \begin{pmatrix} 0 \end{pmatrix} \\
 i_w & \leq 5 \Rightarrow i_w & \leq & \begin{pmatrix} 1 & 0 \end{pmatrix} & \begin{pmatrix} 5 \end{pmatrix} \\
 0 & \leq i_r \Rightarrow -i_r & \leq 0 & \begin{pmatrix} 0 & -1 \end{pmatrix} & \begin{pmatrix} 0 \end{pmatrix} \\
 i_r & \leq 5 \Rightarrow i_r & \leq & \begin{pmatrix} 0 & 1 \end{pmatrix} & \begin{pmatrix} 5 \end{pmatrix} \\
 i_w & < i_r \Rightarrow i_w - i_r & \leq -1 & \begin{pmatrix} 1 & -1 \end{pmatrix} & \begin{pmatrix} -1 \end{pmatrix} \\
 i_w + 1 & \leq i_r \Rightarrow i_w - i_r & \leq -1 & \begin{pmatrix} 1 & -1 \end{pmatrix} & \begin{pmatrix} -1 \end{pmatrix} \\
 i_r & \leq i_w + 1 \Rightarrow -i_w + i_r & \leq 1 & \begin{pmatrix} -1 & 1 \end{pmatrix} & \begin{pmatrix} 1 \end{pmatrix}
 \end{align*}
 \]

- **and problem 2 with** \(i_r < i_w \)
Generalization

- An affine loop nest

 \[\text{FOR } i_1 = f_{11}(c_1...c_k) \text{ to } I_{u1}(c_1...c_k)\]
 \[\text{FOR } i_2 = f_{12}(i_1,c_1...c_k) \text{ to } I_{u2}(i_1,c_1...c_k)\]
 …
 \[\text{FOR } i_n = f_{1n}(i_1...i_{n-1},c_1...c_k) \text{ to } I_{un}(i_1...i_{n-1},c_1...c_k)\]
 \[A[f_{a1}(i_1...i_n,c_1...c_k), f_{a2}(i_1...i_n,c_1...c_k), ..., f_{am}(i_1...i_n,c_1...c_k)]\]

- Solve 2\(^n\) problems of the form

 - \(i_1 = j_1, i_2 = j_2, ..., i_{n-1} = j_{n-1}, i_n < j_n\)
 - \(i_1 = j_1, i_2 = j_2, ..., i_{n-1} = j_{n-1}, j_n < i_n\)
 - \(i_1 = j_1, i_2 = j_2, ..., i_{n-1} < j_{n-1}\)
 - \(i_1 = j_1, i_2 = j_2, ..., j_{n-1} < i_{n-1}\)

 …
 - \(i_1 = j_1, i_2 < j_2\)
 - \(i_1 = j_1, j_2 < i_2\)
 - \(i_1 < j_1\)
 - \(j_1 < i_1\)
Outline

• Why Parallelism
• Parallel Execution
• Parallelizing Compilers
• Dependence Analysis
• Increasing Parallelization Opportunities
Increasing Parallelization Opportunities

- Scalar Privatization
- Reduction Recognition
- Induction Variable Identification
- Array Privatization
- Loop Transformations
- Granularity of Parallelism
- Interprocedural Parallelization
Scalar Privatization

• Example

\[
\text{FOR } i = 1 \text{ to } n \\
X = A[i] \times 3; \\
B[i] = X;
\]

• Is there a loop carried dependence?
• What is the type of dependence?
Privatization

• Analysis:
 – Any anti- and output- loop-carried dependences

• Eliminate by assigning in local context

  ```
  FOR i = 1 to n
    integer Xtmp;
    [i] * 3;
    B[i] = Xtmp;
  ```

• Eliminate by expanding into an array

  ```
  FOR i = 1 to n
    Xtmp[i] = A[i] * 3;
    B[i] = Xtmp[i];
  ```
Privatization

- Need a final assignment to maintain the correct value after the loop nest

- Eliminate by assigning in local context

  ```c
  FOR i = 1 to n
  integer Xtmp;
  Xtmp = A[i] * 3;
  B[i] = Xtmp;
  if(i == n) X = Xtmp
  ```

- Eliminate by expanding into an array

  ```c
  FOR i = 1 to n
  Xtmp[i] = A[i] * 3;
  B[i] = Xtmp[i];
  X = Xtmp[n];
  ```
Another Example

• How about loop-carried true dependences?

 Example

 FOR i = 1 to n
 X = X + A[i];

• Is this loop parallelizable?
Reduction Recognition

• Reduction Analysis:
 – Only associative operations
 – The result is never used within the loop

• Transformation

  ```c
  Integer Xtmp[NUMPROC];
  Barrier();
  FOR i = myPid*Iters to MIN((myPid+1)*Iters, n)
    Xtmp[myPid] = Xtmp[myPid] + A[i];
  Barrier();
  If(myPid == 0) {
    FOR p = 0 to NUMPROC-1
      X = X + Xtmp[p];
  ...
Induction Variables

- Example
  
  ```
 FOR i = 0 to N
 A[i] = 2^i;
  ```

- After strength reduction
  
  ```
 t = 1
 FOR i = 0 to N
 A[i] = t;
 t = t*2;
  ```

- What happened to loop carried dependences?

- Need to do opposite of this!
  - Perform induction variable analysis
  - Rewrite IVs as a function of the loop variable
Array Privatization

• Similar to scalar privatization

• However, analysis is more complex
  – Array Data Dependence Analysis:
    Checks if two iterations access the same location
  – Array Data Flow Analysis:
    Checks if two iterations access the same value

• Transformations
  – Similar to scalar privatization
  – Private copy for each processor or expand with an additional dimension
Loop Transformations

- A loop may not be parallel as is
- Example

```plaintext
FOR i = 1 to N-1
 FOR j = 1 to N-1
```
Loop Transformations

• A loop may not be parallel as is

Example

\[
\begin{align*}
&\text{FOR } i = 1 \text{ to } N-1 \\
&\quad \text{FOR } j = 1 \text{ to } N-1 \\
\end{align*}
\]

• After loop Skewing

\[
\begin{align*}
&\text{FOR } i = 1 \text{ to } 2*N-3 \\
&\quad \text{FORPAR } j = \max(1,i-N+2) \text{ to } \min(i, N-1) \\
&\quad \quad A[i-j+1,j] = A[i-j+1,j-1] + A[i-j,j];
\end{align*}
\]
Granularity of Parallelism

- Example
  \[
  \text{FOR } i \ = \ 1 \ \text{to} \ N-1 \\
  \quad \text{FOR } j \ = \ 1 \ \text{to} \ N-1 \\
  \quad \quad A[i,j] = A[i,j] + A[i-1,j];
  \]

- Gets transformed into
  \[
  \text{FOR } i = 1 \ \text{to} \ N-1 \\
  \quad \text{Barrier();} \\
  \quad \text{FOR } j = 1+ \text{myPid}*\text{Iters} \ \text{to} \ \text{MIN}((\text{myPid}+1)*\text{Iters}, \ n-1) \\
  \quad \quad A[i,j] = A[i,j] + A[i-1,j]; \\
  \quad \text{Barrier();}
  \]

- Inner loop parallelism can be expensive
  - Startup and teardown overhead of parallel regions
  - Lot of synchronization
  - Can even lead to slowdowns
Granularity of Parallelism

• Inner loop parallelism can be expensive

• Solutions
  – Don’t parallelize if the amount of work within the loop is too small
  or
  – Transform into outer-loop parallelism
Outer Loop Parallelism

- **Example**

  ```
 FOR i = 1 to N-1
 FOR j = 1 to N-1
  ```

- **After Loop Transpose**

  ```
 FOR j = 1 to N-1
 FOR i = 1 to N-1
  ```

- **Get mapped into**

  ```
 Barrier();
 FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)
 FOR i = 1 to N-1
 Barrier();
  ```
Unimodular Transformations

- Interchange, reverse and skew
- Use a matrix transformation
  \[ I_{\text{new}} = A I_{\text{old}} \]

- Interchange
  \[
  \begin{bmatrix}
  i_{\text{new}} \\
  j_{\text{new}}
  \end{bmatrix} = \begin{bmatrix}
  0 & 1 \\
  1 & 0
  \end{bmatrix}
  \begin{bmatrix}
  i_{\text{old}} \\
  j_{\text{old}}
  \end{bmatrix}
  \]

- Reverse
  \[
  \begin{bmatrix}
  i_{\text{new}} \\
  j_{\text{new}}
  \end{bmatrix} = \begin{bmatrix}
  -1 & 0 \\
  0 & 1
  \end{bmatrix}
  \begin{bmatrix}
  i_{\text{old}} \\
  j_{\text{old}}
  \end{bmatrix}
  \]

- Skew
  \[
  \begin{bmatrix}
  i_{\text{new}} \\
  j_{\text{new}}
  \end{bmatrix} = \begin{bmatrix}
  1 & 1 \\
  0 & 1
  \end{bmatrix}
  \begin{bmatrix}
  i_{\text{old}} \\
  j_{\text{old}}
  \end{bmatrix}
  \]
Legality of Transformations

- Unimodular transformation with matrix $A$ is valid iff.
  For all dependence vectors $v$ the first non-zero in $Av$ is positive

- Example
  \[
  \text{FOR } i = 1 \text{ to } N-1 \\
  \text{FOR } j = 1 \text{ to } N-1 \\
  \]

- Interchange
  \[
  A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \\
  \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \\
  \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \\
  \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}
  \]

- Reverse
  \[
  d_v = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
  \]

- Skew
Interprocedural Parallelization

- Function calls will make a loop unparallelizable
  - Reduction of available parallelism
  - A lot of inner-loop parallelism

- Solutions
  - Interprocedural Analysis
  - Inlining
Interprocedural Parallelization

• Issues
  – Same function reused many times
  – Analyze a function on each trace $\rightarrow$ Possibly exponential
  – Analyze a function once $\rightarrow$ unrealizable path problem

• Interprocedural Analysis
  – Need to update all the analysis
  – Complex analysis
  – Can be expensive

• Inlining
  – Works with existing analysis
  – Large code bloat $\rightarrow$ can be very expensive
Summary

- Multicores are here
  - Need parallelism to keep the performance gains
  - Programmer defined or compiler extracted parallelism

- Automatic parallelization of loops with arrays
  - Requires Data Dependence Analysis
  - Iteration space & data space abstraction
  - An integer programming problem

- Many optimizations that’ll increase parallelism