
Introduction to Program Analysis 
and Optimization



Outline

• Introduction 

• Basic Blocks

• Common Subexpression Elimination

• Copy Propagation

• Dead Code Elimination

• Algebraic Simplification

• Summary



Program Analysis

• Compile-time reasoning about run-time behavior 
of program

– Can discover things that are always true:

• “x is always 1 in the statement y = x + z”

• “the pointer p always points into array a”

• “the statement return 5 can never execute”

– Can infer things that are likely to be true:

• “the reference r usually refers to an object of class C”

• “the statement a = b + c appears to execute more frequently 
than the statement x = y + z”

– Distinction between data and control-flow properties



Transformations

• Use analysis results to transform program

• Overall goal: improve some aspect of program

• Traditional goals: 
– Reduce number of executed instructions

– Reduce overall code size

• Other goals emerge as space becomes more complex
– Reduce number of cycles

• Use vector or DSP instructions

• Improve instruction or data cache hit rate

– Reduce power consumption

– Reduce memory usage



Outline

• Introduction

• Basic Blocks

• Common Subexpression Elimination

• Copy Propagation

• Dead Code Elimination

• Algebraic Simplification

• Summary



Control Flow Graph

• Nodes Represent Computation

– Each Node is a Basic Block

– Basic Block is a Sequence of Instructions with

• No Branches Out Of Middle of Basic Block

• No Branches Into Middle of Basic Block

• Basic Blocks should be maximal

– Execution of basic block starts with first 
instruction

– Includes all instructions in basic block

• Edges Represent Control Flow



Control Flow Graph

into add(n, k) { 

s = 0; a = 4; i = 0;

if (k == 0) 

b = 1;

else 

b = 2;

while (i < n) { 

s = s + a*b;

i = i + 1;

}

return s;

}

s = 0;

a = 4;

i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;
return s;



Basic Block Construction

s = 0;

a = 4;

• Start with instruction control-flow graph

• Visit all edges in graph

• Merge adjacent nodes if

– Only one edge from first node

– Only one edge into second node

s = 0;

a = 4;



s = 0;

a = 4;

i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;

a = 4;



s = 0;

a = 4;

i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;

a = 4;

i = 0;



s = 0;

a = 4;

i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;

a = 4;

i = 0;

k == 0



s = 0;

a = 4;

i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;

a = 4;

i = 0;

k == 0

b = 2;



s = 0;

a = 4;

i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;

a = 4;

i = 0;

k == 0

b = 2;

i < n



s = 0;

a = 4;

i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;

a = 4;

i = 0;

k == 0

b = 2;

i < n

s = s + a*b;



s = 0;

a = 4;

i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;

a = 4;

i = 0;

k == 0

b = 2;

i < n

s = s + a*b;

i = i + 1;



s = 0;

a = 4;

i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;

a = 4;

i = 0;

k == 0

b = 2;

i < n

s = s + a*b;

i = i + 1;



s = 0;

a = 4;

i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;

a = 4;

i = 0;

k == 0

b = 2;

i < n

s = s + a*b;

i = i + 1;
return s;



s = 0;

a = 4;

i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;

a = 4;

i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;
return s;



s = 0;

a = 4;

i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;

a = 4;

i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;
return s;



s = 0;

a = 4;

i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

s = 0;

a = 4;

i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;
return s;



Program Points, Split and Join 
Points

• One program point before and after each 
statement in program

• Split point has multiple successors – conditional 
branch statements only split points

• Merge point has multiple predecessors

• Each basic block

– Either starts with a merge point or its 
predecessor ends with a split point

– Either ends with a split point or its successor 
starts with a merge point



Basic Block Optimizations

• Common Sub-
Expression Elimination
– a=(x+y)+z;  b=x+y; 

– t=x+y;  a=t+z; b=t;

• Constant Propagation
– x=5; b=x+y;

– x=5; b=5+y;

• Algebraic Identities
– a=x*1;

– a=x;

• Copy Propagation
– a=x+y; b=a; c=b+z;

– a=x+y; b=a; c=a+z;

• Dead Code Elimination
– a=x+y; b=a; b=a+z;

– a=x+y;         b=a+z 

• Strength Reduction
– t=i*4;

– t=i<<2;



Basic Block Analysis Approach
• Assume normalized basic block - all statements 

are of the form

– var = var op var (where op is a binary operator)

– var = op var (where op is a unary operator)

– var = var

• Simulate a symbolic execution of basic block

– Reason about values of variables (or other 
aspects of computation)

– Derive property of interest



Two Kinds of Variables

• Temporaries Introduced By Compiler

– Transfer values only within basic block

– Introduced as part of instruction flattening

– Introduced by optimizations/transformations

– Typically assigned to only once

• Program Variables

– Declared in original program

– May be assigned to multiple times

– May transfer values between basic blocks



Outline

• Introduction

• Basic Blocks

• Common Subexpression Elimination

• Copy Propagation

• Dead Code Elimination

• Algebraic Simplification

• Summary



Value Numbering
• Reason about values of variables and expressions 

in the program

– Simulate execution of basic block

– Assign virtual value to each variable and expression

• Discovered property: which variables and expressions 
have the same value

• Standard use: 

– Common subexpression elimination

– Typically combined with transformation that

• Saves computed values in temporaries

• Replaces expressions with temporaries when value 
of expression previously computed



b  v5b  v6

a = x+y
b = a+z
b = b+y
c = a+z

a = x+y
t1 = a
b = a+z
t2 = b
b = b+y
t3 = b

x  v1
y  v2
a  v3
z  v4

c  v5

Original Basic
Block

New Basic
Block

Var to Val

v1+v2  v3
v3+v4  v5

Exp to Val

v1+v2  t1
v3+v4  t2

Exp to Tmp

c = t2

v5+v2  v6 v5+v2  t3



Value Numbering Summary

• Forward symbolic execution of basic block

• Each new value assigned to temporary
– a=x+y; becomes a=x+y; t=a;

– Temporary preserves value for use later in program even 
if original variable rewritten

• a=x+y;        a=a+z; b=x+y becomes

• a=x+y; t=a; a=a+z; b=t;

• Maps
– Var to Val – specifies symbolic value for each variable

– Exp to Val – specifies value of each evaluated expression

– Exp to Tmp – specifies tmp that holds value of each 
evaluated expression



Map Usage
• Var to Val 

– Used to compute symbolic value of y and z when 
processing statement of form x = y + z

• Exp to Tmp

– Used to determine which tmp to use if value(y) + 
value(z) previously computed when processing 
statement of form x = y + z

• Exp to Val

– Used to update Var to Val when 

• processing statement of the form x = y + z, and

• value(y) + value(z) previously computed



Interesting Properties

• Finds common subexpressions even if they use 
different variables in expressions

– y=a+b;        x=b; z=a+x becomes

– y=a+b; t=y; x=b; z=t

– Why? Because computes with symbolic values

• Finds common subexpressions even if variable 
that originally held the value was overwritten

– y=a+b;        y=1; z=a+b becomes

– y=a+b; t=y; y=1; z=t

– Why? Because saves values away in 
temporaries



One More Interesting Property

• Flattening and CSE combine to capture partial and 
arbitrarily complex common subexpressions

w=(a+b)+c;                x=b;              y=(a+x)+c; z=a+b;

– After flattening:

t1=a+b; w=t1+c;         x=b; t2=a+x; y=t2+c;      z=a+b;

– CSE algorithm notices that 

• t1+c and t2+c compute same value

• In the statement z = a+b, a+b has already been computed so 
generated code can reuse the result

t1=a+b; w=t1+c; t3=w; x=b; t2=t1;   y=t3;         z=t1; 



Problems I

• Algorithm has a temporary for each new value

– a=x+y; t1=a;

• Introduces

– lots of temporaries

– lots of copy statements to temporaries

• In many cases, temporaries and copy statements 
are unnecessary

• So we eliminate them with copy propagation and 
dead code elimination



Problems II

• Expressions have to be identical 

– a=x+y+z; b=y+z+x;  c=x*2+y+2*z–(x+z)

• We use canonicalization    

• We use algebraic simplification  



Copy Propagation

• Once again, simulate execution of program

• If can, use original variable instead of temporary

– a=x+y; b=x+y;

– After CSE becomes a=x+y;  t=a; b=t;

– After CP becomes   a=x+y;  t=a; b=a;

– After DCE becomes a=x+y;         b=a;

• Key idea: 

– determine when original variable is NOT overwritten 
between its assignment statement and the use of the 
computed value

– If not overwritten, use original variable



Outline

• Introduction

• Basic Blocks

• Common Subexpression Elimination

• Copy Propagation

• Dead Code Elimination

• Algebraic Simplification

• Summary



Copy Propagation Maps

• Maintain two maps 

– tmp to var: tells which variable to use instead 
of a given temporary variable

– var to set: inverse of tmp to var. tells which 
temps are mapped to a given variable by tmp 
to var



Copy Propagation Example

• Original

a = x+y

b = a+z

c = x+y

a = b

• After CSE

a = x+y

t1 = a

b = a+z

t2 = b

c = t1

a = b

• After CSE and Copy 
Propagation

a = x+y

t1 = a

b = a+z

t2 = b

c = a

a = b



Copy Propagation Example

a = x+y
t1 = a

Basic Block
After CSE

a = x+y
t1 = a

Basic Block After 
CSE and Copy Prop

tmp to var var to set

t1  a a {t1}



Copy Propagation Example

a = x+y
t1 = a
b = a+z
t2 = b

Basic Block
After CSE

a = x+y
t1 = a
b = a+z
t2 = b

Basic Block After 
CSE and Copy Prop

tmp to var var to set

t1  a
t2  b

a {t1}
b {t2}



Copy Propagation Example

a = x+y
t1 = a
b = a+z
t2 = b
c = t1

Basic Block
After CSE

a = x+y
t1 = a
b = a+z
t2 = b

Basic Block After 
CSE and Copy Prop

tmp to var var to set

t1  a
t2  b

a {t1}
b {t2}



Copy Propagation Example

a = x+y
t1 = a
b = a+z
t2 = b
c = t1

Basic Block
After CSE

a = x+y
t1 = a
b = a+z
t2 = b
c = a

Basic Block After 
CSE and Copy Prop

tmp to var var to set

t1  a
t2  b

a {t1}
b {t2}



Copy Propagation Example

a = x+y
t1 = a
b = a+z
t2 = b
c = t1
a = b

Basic Block
After CSE

a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

Basic Block After 
CSE and Copy Prop

tmp to var var to set

t1  a
t2  b

a {t1}
b {t2}



Copy Propagation Example

a = x+y
t1 = a
b = a+z
t2 = b
c = t1
a = b

Basic Block
After CSE

a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

Basic Block After 
CSE and Copy Prop

tmp to var var to set

t1  t1
t2  b

a {}
b {t2}



Outline

• Introduction

• Basic Blocks

• Common Subexpression Elimination

• Copy Propagation

• Dead Code Elimination

• Algebraic Simplification

• Summary



Dead Code Elimination

• Copy propagation keeps all temps around

• May be temps that are never read

• Dead Code Elimination removes them

a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

a = x+y
b = a+z
c = a
a = b

Basic Block After 
CSE and CP

Basic Block After 
CSE, CP and DCE



Dead Code Elimination

• Basic Idea

– Process Code In Reverse Execution Order

– Maintain a set of variables that are needed 
later in computation

– If encounter an assignment to a temporary 
that is not needed, remove assignment



a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

Basic Block After 
CSE and Copy Prop

Needed Set
{b}



a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

Basic Block After 
CSE and Copy Prop

Needed Set
{a, b}



a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

Basic Block After 
CSE and Copy Prop

Needed Set
{a, b}



a = x+y
t1 = a
b = a+z

c = a
a = b

Basic Block After 
CSE and Copy Prop

Needed Set
{a, b}



a = x+y
t1 = a
b = a+z

c = a
a = b

Basic Block After 
CSE and Copy Prop

Needed Set
{a, z}



a = x+y
t1 = a
b = a+z

c = a
a = b

Basic Block After 
CSE and Copy Prop

Needed Set
{a, z}



a = x+y

b = a+z

c = a
a = b

Basic Block After 
CSE and Copy Prop

Needed Set
{a, z}



a = x+y

b = a+z

c = a
a = b

Basic Block After , CSE Copy Propagation,
and Dead Code Elimination

Needed Set
{x, y, z}



a = x+y

b = a+z

c = a
a = b

Basic Block After , CSE Copy Propagation,
and Dead Code Elimination

Needed Set
{x, y, z}



Outline

• Introduction

• Basic Blocks

• Common Subexpression Elimination

• Copy Propagation

• Dead Code Elimination

• Algebraic Simplification

• Summary



Algebraic Simplification

• Apply our knowledge from algebra, number 
theory etc. to simplify expressions



Algebraic Simplification

• Apply our knowledge from algebra, number 
theory etc. to simplify expressions

• Example
– a + 0  a
– a * 1  a
– a / 1  a
– a * 0  0
– 0 - a  -a
– a + (-b)  a - b
– -(-a)  a



Algebraic Simplification

• Apply our knowledge from algebra, number 
theory etc. to simplify expressions

• Example
– a  true  a
– a  false  false
– a  true  true
– a  false  a



Algebraic Simplification

• Apply our knowledge from algebra, number 
theory etc. to simplify expressions

• Example
– a ^ 2  a*a
– a * 2  a + a
– a * 8  a << 3



Opportunities for 
Algebraic Simplification

• In the code

– Programmers are lazy to simplify expressions

– Programs are more readable with full expressions

• After compiler expansion

– Example: Array read A[8][12] will get expanded to

– *(Abase + 4*(12 + 8*256)) which can be simplified

• After other optimizations



Usefulness of Algebraic Simplification

• Reduces the number of instructions

• Uses less expensive instructions

• Enable other optimizations



Implementation

• Not a data-flow optimization!

• Find candidates that matches the 
simplification rules and simplify the 
expression trees

• Candidates may not be obvious



Implementation

• Not a data-flow optimization!

• Find candidates that matches the 
simplification rules and simplify the 
expression trees

• Candidates may not be obvious

– Example
a + b - a

a -

b a

+



Use knowledge about operators

• Commutative operators
– a op b = b op a
–

• Associative operators
– (a op b) op c = b op (a op c)



Canonical Format

• Put expression trees into a canonical 
format

– Sum of multiplicands

– Variables/terms in a canonical order

– Example
(a+3)*(a+8)*4   4*a*a+44*a+96

– Section 12.3.1 of whale book talks about this



Effects on the Numerical Stability

• Some algebraic simplifications may produce 
incorrect results



Effects on the Numerical Stability

• Some algebraic simplifications may produce 
incorrect results

• Example

– (a / b)*0 + c



Effects on the Numerical Stability

• Some algebraic simplifications may produce 
incorrect results

• Example

– (a / b)*0 + c

– we can simplify this to  c



Effects on the Numerical Stability

• Some algebraic simplifications may produce 
incorrect results

• Example

– (a / b)*0 + c

– we can simplify this to  c

– But what about when b = 0
should be a exception, but we’ll get a result!



Outline

• Introduction

• Basic Blocks

• Common Subexpression Elimination

• Copy Propagation

• Dead Code Elimination

• Algebraic Simplification

• Summary



Interesting Properties

• Analysis and Transformation Algorithms 
Symbolically Simulate Execution of Program
– CSE and Copy Propagation go forward

– Dead Code Elimination goes backwards

• Transformations stacked
– Group of basic transformations work together

– Often, one transformation creates inefficient code that 
is cleaned up by following transformations

– Transformations can be useful even if original code 
may not benefit from transformation



Other Basic Block Transformations

• Constant Propagation

• Strength Reduction

– a<<2 = a*4; a+a+a = 3*a;

• Do these in unified transformation 
framework, not in earlier or later phases



Summary

• Basic block analyses and transformations

• Symbolically simulate execution of program
– Forward (CSE, copy prop, constant prop)

– Backward (Dead code elimination)

• Stacked groups of analyses and transformations that work 
together
– CSE introduces excess temporaries and copy statements

– Copy propagation often eliminates need to keep temporary 
variables around

– Dead code elimination removes useless code

• Similar in spirit to many analyses and transformations that 
operate across basic blocks


