MIT 6.035
Loop Optimizations

Martin Rinard
Loop Optimizations

• Important because lots of computation occurs in loops
• We will study two optimizations
 – Loop-invariant code motion
 – Induction variable elimination
What is a Loop?
What is a Loop?

- Set of nodes
- Loop header
 - Single node
 - All iterations of loop go through header
- Back edge
Anamalous Situations

- Two back edges, two loops, one header
- Compiler merges loops
- No loop header, no loop
Defining Loops With Dominators

• Concept of dominator
 – Node n dominates a node m if all paths from start node to m go through n
 – “The road to the Super Bowl goes through New England”
 Conclusion? New England dominates the Super Bowl!

• If d_1 and d_2 both dominate n, then either
 – d_1 dominates d_2, or
 – d_2 dominates d_1 (but not both – look at path from start)

• Immediate dominator n – last dominator of n on any path from start node
Dominator Tree

• Nodes are nodes of control flow graph
• Edge from d to n if d immediate dominator of n
• This structure is a tree
• Rooted at start node
Example Dominator Tree
Dominator Conditions

- When does n dominate m?
 - When n dominates all predecessors of m
 - When n = m (convenient default)

- Suggests dataflow-like algorithm for computing dominators
Dominator Algorithm

\[D(n_0) = \{ n_0 \} \]

for \(n \) in \(N - \{ n_0 \} \) do \(D(n) = N \)

while \(D \) changes do

for \(n \in N - \{ n_0 \} \) do

\[D(n) = \{ n \} \cup \bigcap_{p \in \text{pred}(n)} D(p) \]

- Why does the algorithm complete?
- Why does the algorithm get right answer?
- Note complete recomputation of \(D \) on every iteration
- Could run a worklist algorithm
Dominator Computation

\[
\begin{align*}
\{1, 2, 3, 4, 5, 6, 7 \} & \quad \{1\} \\
\{1, 2, 3, 4, 5, 6, 7 \} & \quad 2 \\
\{1, 2, 3, 4, 5, 6, 7 \} & \quad 3 \\
\{1, 2, 3, 4, 5, 6, 7 \} & \quad 4 \\
\{1, 2, 3, 4, 5, 6, 7 \} & \quad 5 \\
\{1, 2, 3, 4, 5, 6, 7 \} & \quad 6 \\
\{1, 2, 3, 4, 5, 6, 7 \} & \quad 7 \\
\{1, 2, 3, 4, 5, 6, 7 \} & \quad \{1, 2, 3, 4, 5, 6, 7 \}
\end{align*}
\]
Dominator Computation

{ 1, 2 } → 1 → { 1 }

{ 1, 2, 3, 4, 5, 6, 7 } → 2 → { 1, 2 } → 3 → { 1, 2, 3, 4, 5, 6, 7 } → 4 → { 1, 2, 3, 4, 5, 6, 7 } → 5 → { 1, 2, 3, 4, 5, 6, 7 } → 6 → { 1, 2, 3, 4, 5, 6, 7 } → 7 → { 1, 2, 3, 4, 5, 6, 7 }
Dominator Computation

\[
\begin{array}{c}
\{1, 2\} \\
{1, 3} \\
{1, 2, 3, 4, 5, 6, 7} \\
{1, 2, 3, 4, 5, 6, 7} \\
{1, 2, 3, 4, 5, 6, 7}
\end{array}
\]
Dominator Computation

![Dominator Computation Diagram]

- Node 1 dominates nodes {1}
- Node 2 dominates nodes {1, 2}
- Node 3 dominates nodes {1, 3}
- Node 4 dominates nodes {1, 3, 4}
- Node 5 dominates nodes {1, 2, 3, 4, 5, 6, 7}
- Node 6 dominates nodes {1, 2, 3, 4, 5, 6, 7}
- Node 7 dominates nodes {1, 2, 3, 4, 5, 6, 7}
Dominator Computation

\[
\begin{align*}
\{1, 2\} & \rightarrow 2 \\
\{1, 3\} & \rightarrow 3 \\
\{1, 3, 4\} & \rightarrow 4 \\
\{1, 3, 4, 5\} & \rightarrow 5 \\
\{1, 2, 3, 4, 5, 6, 7\} & \rightarrow 7
\end{align*}
\]
Dominator Computation

1

{ 1, 2 } 2

{ 1, 3 } 3

{ 1, 3, 4 } 4

{ 1, 3, 4, 5 } 5

{ 1, 3, 4 } 7

{ 1, 3, 4, 6 } 6

{ 1 }
Defining Loops

- Unique entry point – header
- At least one path back to header
- Find edges whose heads dominate tails
 - These edges are back edges of loops
 - Given back edge $n \rightarrow d$
 - Loop consists of n, d plus all nodes that can reach n without going through d
 (all nodes “between” d and n)
- d is loop header
Two Loops In Example
Loop Construction Algorithm

insert(m)
 if m \notin loop then
 loop = loop \cup \{ m \}
 push m onto stack

loop(d,n)
 loop = \{ d \}; stack = \emptyset; insert(n);
 while stack not empty do
 m = pop stack;
 for all p \in \text{pred}(m) do insert(p)
Nested Loops

- If two loops do not have same header then
 - Either one loop (inner loop) contained in other (outer loop)
 - Or two loops are disjoint
- If two loops have same header, typically unioned and treated as one loop

Two loops: \{1,2\} and \{1, 3\}
Unioned: \{1,2,3\}
Loop Preheader

- Many optimizations stick code before loop
- Put a special node (loop preheader) before loop to hold this code
Loop Optimizations

• Now that we have the loop, can optimize it!
• Loop invariant code motion
 – Stick loop invariant code in the header
Detecting Loop Invariant Code

• A statement is invariant if operands are
 – Constant,
 – Have all reaching definitions outside loop, or
 – Have exactly one reaching definition, and that definition comes from an invariant statement

• Concept of exit node of loop
 – node with successors outside loop
Loop Invariant Code Detection Algorithm

for all statements in loop
 if operands are constant or have all reaching definitions outside loop, mark statement as invariant

do
 for all statements in loop not already marked invariant
 if operands are constant, have all reaching definitions outside loop, or have exactly one reaching definition from invariant statement then
 mark statement as invariant

until find no more invariant statements
Loop Invariant Code Motion

- Conditions for moving a statement $s: x := y + z$ into loop header:
 - s dominates all exit nodes of loop
 - If it doesn’t, some use after loop might get wrong value
 - Alternate condition: definition of x from s reaches no use outside loop (but moving s may increase run time)
 - No other statement in loop assigns to x
 - If one does, assignments might get reordered
 - No use of x in loop is reached by definition other than s
 - If one is, movement may change value read by use
Order of Statements in Preheader
Preserve data dependences from original program
(can use order in which discovered by algorithm)
Induction Variable Elimination

\[i = 0 \]
\[i < 10 \]
\[i = i + 1 \]
\[p = 4i \]
\[\text{use of } p \]

\[p = 0 \]
\[p < 40 \]
\[p = p + 4 \]
\[\text{use of } p \]
What is an Induction Variable?

- **Base induction variable**
 - Only assignments in loop are of form \(i = i \pm c \)

- **Derived induction variables**
 - Value is a linear function of a base induction variable
 - Within loop, \(j = c \times i + d \), where \(i \) is a base induction variable
 - Very common in array index expressions – an access to \(a[i] \) produces code like \(p = a + 4 \times i \)
Strength Reduction for Derived Induction Variables

\[
i = 0
\]
\[
i < 10
\]
\[
i = i + 1
p = 4*i
\]
\[
\text{use of } p
\]

\[
i = 0
p = 0
\]
\[
i < 10
\]
\[
i = i + 1
p = p + 4
\]
\[
\text{use of } p
\]
Elimination of Superfluous Induction Variables

\[
\begin{align*}
 &i = 0 \\
 &p = 0 \\
 &i < 10 \\
 &i = i + 1 \\
 &p = p + 4
\end{align*}
\]

\[
\begin{align*}
 &p = 0 \\
 &p < 40 \\
 &p = p + 4
\end{align*}
\]

use of \(p \)
Three Algorithms

• Detection of induction variables
 – Find base induction variables
 – Each base induction variable has a family of derived induction variables, each of which is a linear function of base induction variable

• Strength reduction for derived induction variables

• Elimination of superfluous induction variables
Output of Induction Variable Detection Algorithm

• Set of induction variables
 – base induction variables
 – derived induction variables

• For each induction variable j, a triple <i,c,d>
 – i is a base induction variable
 – value of j is i*c+d
 – j belongs to family of i
Induction Variable Detection Algorithm

Scan loop to find all base induction variables
do

Scan loop to find all variables k with one assignment of form $k = j*b$ where j is an induction variable with triple $<i,c,d>$
make k an induction variable with triple $<i,c*b,d*b>$

Scan loop to find all variables k with one assignment of form $k = j\pm b$ where j is an induction variable with triple $<i,c,d>$
make k an induction variable with triple $<i,c,b\pm d>$

until no more induction variables found
Strength Reduction Algorithm

for all derived induction variables j with triple <i,c,d>

Create a new variable s

Replace assignment j = i*c+d with j = s

Immediately after each assignment i = i + e, insert statement s = s + c*e (c*e is constant)

place s in family of i with triple <i,c,d>

Insert s = c*i+d into preheader
Strength Reduction for Derived Induction Variables

\[i = 0 \]
\[i < 10 \]
\[i = i + 1 \]
\[p = 4*i \]

use of \(p \)

\[i = 0 \]
\[p = 0 \]
\[i < 10 \]
\[i = i + 1 \]
\[p = p + 4 \]

use of \(p \)
Induction Variable Elimination

Choose a base induction variable i such that only uses of i are in termination condition of the form $i < n$.

Choose a derived induction variable k with $<i,c,d>$.

Replace termination condition with $k < c*n+d$.

Why?

$k = i*c + d \Rightarrow i < n \iff i*c < c*n \iff i*c + d < c*n + d \iff k < c*n + d$
Induction Variable Wrapup

- There is lots more to induction variables
 - more general classes of induction variables
 - more general transformations involving induction variables
Summary

• Wide range of analyses and optimizations

• Dataflow Analyses and Corresponding Optimizations
 – reaching definitions, constant propagation
 – live variable analysis, dead code elimination

• Induction variable analyses and optimizations
 – Strength reduction
 – Induction variable elimination
 – Important because of time spent in loops