
Parallelization

Outline

• Why Parallelism

• Parallel Execution

• Parallelizing Compilers

• Dependence Analysis

• Increasing Parallelization Opportunities

1
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

P
e

rf
o

rm
a
n

c
e

 (
v
s
.
V

A
X

-1
1

/7
8

0
)

25%/year

52%/year ??%/year

8086

286

386

486

Pentium

P2

P3

P4

Itanium

Itanium 2

Moore’s Law

From David Patterson

1,000,000,000

100,000

10,000

1,000,000

10,000,000

100,000,000

From Hennessy and Patterson, Computer Architecture:

A Quantitative Approach, 4th edition, 2006

N
u
m

b
e

r o
f T

ra
n

s
is

to
rs

8086

286

386

486

Pentium

P2

P3

P4

Itanium

Itanium 2

Uniprocessor Performance (SPECint)

From David Patterson

1,000,000,000

100,000

10,000

1,000,000

10,000,000

100,000,000

From Hennessy and Patterson, Computer Architecture:

A Quantitative Approach, 4th edition, 2006

N
u
m

b
e

r o
f T

ra
n

s
is

to
rs

Multicores Are Here!

1985 199019801970 1975 1995 2000

4004

8008

80868080 286 386 486 Pentium P2 P3
P4
Itanium

Itanium 2

2005 20??

of

cores

1

2

4

8

16

32

64

128

256

512

Athlon

Raw

Power4
Opteron

Power6

Niagara

Yonah
PExtreme

Tanglewood

Cell

Intel

Tflops

Xbox360

Cavium

Octeon

Raza

XLR

PA-8800

Cisco

CSR-1

Picochip

PC102

Boardcom 1480
Opteron 4P

Xeon MP

Ambric

AM2045

Issues with Parallelism
• Amdhal’s Law

– Any computation can be analyzed in terms of a portion that
must be executed sequentially, Ts, and a portion that can be
executed in parallel, Tp. Then for n processors:

– T(n) = Ts + Tp/n

– T() = Ts, thus maximum speedup (Ts + Tp) /Ts

• Load Balancing
– The work is distributed among processors so that all processors

are kept busy when parallel task is executed.

• Granularity
– The size of the parallel regions between synchronizations or

the ratio of computation (useful work) to communication
(overhead).

Outline

• Why Parallelism

• Parallel Execution

• Parallelizing Compilers

• Dependence Analysis

• Increasing Parallelization Opportunities

Types of Parallelism

• Instruction Level
Parallelism (ILP)

• Task Level Parallelism
(TLP)

• Loop Level Parallelism
(LLP) or Data Parallelism

• Pipeline Parallelism

• Divide and Conquer
Parallelism

 Scheduling and Hardware

 Mainly by hand

 Hand or Compiler Generated

 Hardware or Streaming

 Recursive functions

Why Loops?

• 90% of the execution time in 10% of the code

– Mostly in loops

• If parallel, can get good performance

– Load balancing

• Relatively easy to analyze

Programmer Defined Parallel Loop

• FORALL

– No “loop carried
dependences”

– Fully parallel

• FORACROSS

– Some “loop carried
dependences”

Parallel Execution

• Example
FORPAR I = 0 to N

A[I] = A[I] + 1

• Block Distribution: Program gets mapped into
Iters = ceiling(N/NUMPROC);

FOR P = 0 to NUMPROC-1

FOR I = P*Iters to MIN((P+1)*Iters, N)

A[I] = A[I] + 1

• SPMD (Single Program, Multiple Data) Code
If(myPid == 0) {

…

Iters = ceiling(N/NUMPROC);

}

Barrier();

FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)

A[I] = A[I] + 1

Barrier();

Parallel Execution

• Example
FORPAR I = 0 to N

A[I] = A[I] + 1

• Block Distribution: Program gets mapped into
Iters = ceiling(N/NUMPROC);

FOR P = 0 to NUMPROC-1

FOR I = P*Iters to MIN((P+1)*Iters, N)

A[I] = A[I] + 1

• Code fork a function
Iters = ceiling(N/NUMPROC);

FOR P = 0 to NUMPROC – 1 { ParallelExecute(func1, P); }

BARRIER(NUMPROC);

void func1(integer myPid)

{

FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)

A[I] = A[I] + 1

}

Parallel Thread Basics

• Create separate threads

– Create an OS thread

• (hopefully) it will be run on a separate core

– pthread_create(&thr, NULL, &entry_point, NULL)

– Overhead in thread creation

• Create a separate stack

• Get the OS to allocate a thread

• Thread pool

– Create all the threads (= num cores) at the beginning

– Keep N-1 idling on a barrier, while sequential execution

– Get them to run parallel code by each executing a
function

– Back to the barrier when parallel region is done

Outline

• Why Parallelism

• Parallel Execution

• Parallelizing Compilers

• Dependence Analysis

• Increasing Parallelization Opportunities

Parallelizing Compilers

• Finding FORALL Loops out of FOR loops

• Examples
FOR I = 0 to 5

A[I] = A[I] + 1

FOR I = 0 to 5

A[I] = A[I+6] + 1

For I = 0 to 5

A[2*I] = A[2*I + 1] + 1

Iteration Space
• N deep loops  N-dimensional discrete iteration space

– Normalized loops: assume step size = 1

FOR I = 0 to 6

FOR J = I to 7

• Iterations are represented as coordinates in iteration space
– i̅ = [i1, i2, i3,…, in]

0 1 2 3 4 5 6 7  J
0

1

2

3

4

5

6

I 

Iteration Space
• N deep loops  N-dimensional discrete iteration space

– Normalized loops: assume step size = 1

FOR I = 0 to 6

FOR J = I to 7

• Iterations are represented as coordinates in iteration space

• Sequential execution order of iterations  Lexicographic order
[0,0], [0,1], [0,2], …, [0,6], [0,7],

[1,1], [1,2], …, [1,6], [1,7],
[2,2], …, [2,6], [2,7],

………
[6,6], [6,7],

0 1 2 3 4 5 6 7  J
0

1

2

3

4

5

6

I 

Iteration Space
• N deep loops  N-dimensional discrete iteration space

– Normalized loops: assume step size = 1

FOR I = 0 to 6

FOR J = I to 7

• Iterations are represented as coordinates in iteration space

• Sequential execution order of iterations  Lexicographic order

• Iteration i̅ is lexicograpically less than j̅ , i̅ < j̅ iff
there exists c s.t. i1 = j1, i2 = j2,… ic-1 = jc-1 and ic < jc

0 1 2 3 4 5 6 7  J
0

1

2

3

4

5

6

I 

Iteration Space
• N deep loops  N-dimensional discrete iteration space

– Normalized loops: assume step size = 1

FOR I = 0 to 6

FOR J = I to 7

• An affine loop nest
– Loop bounds are integer linear functions of constants, loop constant

variables and outer loop indexes

– Array accesses are integer linear functions of constants, loop constant
variables and loop indexes

0 1 2 3 4 5 6 7  J
0

1

2

3

4

5

6

I 

Iteration Space
• N deep loops  N-dimensional discrete iteration space

– Normalized loops: assume step size = 1

FOR I = 0 to 6

FOR J = I to 7

• Affine loop nest  Iteration space as a set of linear inequalities

0 ≤ I

I ≤ 6

I ≤ J

J ≤ 7

0 1 2 3 4 5 6 7  J
0

1

2

3

4

5

6

I 

Data Space

• M dimensional arrays  M-dimensional discrete cartesian space

– a hypercube

Integer A(10)

Float B(5, 6)

0 1 2 3 4 5
0

1

2

3

4

0 1 2 3 4 5 6 7 8 9

Dependences

• True dependence
a =

= a

• Anti dependence
= a

a =

• Output dependence
a =

a =

• Definition:
Data dependence exists for a dynamic instance i and j iff
– either i or j is a write operation
– i and j refer to the same variable
– i executes before j

• How about array accesses within loops?

Outline

• Why Parallelism

• Parallel Execution

• Parallelizing Compilers

• Dependence Analysis

• Increasing Parallelization Opportunities

Array Accesses in a loop
FOR I = 0 to 5

A[I] = A[I] + 1

0 1 2 3 4 5 6 7 8 9 10 1112 0 1 2 3 4 5
Iteration Space Data Space

Array Accesses in a loop
FOR I = 0 to 5

A[I] = A[I] + 1

0 1 2 3 4 5 6 7 8 9 10 1112 0 1 2 3 4 5
Iteration Space Data Space

= A[I]

A[I]

= A[I]

A[I]

= A[I]

A[I]

= A[I]

A[I]

= A[I]

A[I]

= A[I]

A[I]

Array Accesses in a loop
FOR I = 0 to 5

A[I+1] = A[I] + 1

0 1 2 3 4 5 6 7 8 9 10 1112 0 1 2 3 4 5
Iteration Space Data Space

= A[I]

A[I+1]

= A[I]

A[I+1]

= A[I]

A[I+1]

= A[I]

A[I+1]

= A[I]

A[I+1]

= A[I]

A[I+1]

Array Accesses in a loop
FOR I = 0 to 5

A[I] = A[I+2] + 1

0 1 2 3 4 5 6 7 8 9 10 1112 0 1 2 3 4 5
Iteration Space Data Space

= A[I+2]

A[I]

= A[I+2]

A[I]

= A[I+2]

A[I]

= A[I+2]

A[I]

= A[I+2]

A[I]

= A[I+2]

A[I]

Array Accesses in a loop
FOR I = 0 to 5

A[2*I] = A[2*I+1] + 1

0 1 2 3 4 5 6 7 8 9 10 1112 0 1 2 3 4 5
Iteration Space Data Space

= A[2*I+1]

A[2*I]

= A[2*I+1]

A[2*I]

= A[2*I+1]

A[2*I]

= A[2*I+1]

A[2*I]

= A[2*I+1]

A[2*I]

= A[2*I+1]

A[2*I]

Distance Vectors

• A loop has a distance d if there exist a data
dependence from iteration i to j and d = j-i

FOR I = 0 to 5

A[I] = A[0] + 1

FOR I = 0 to 5

A[I+1] = A[I] + 1

FOR I = 0 to 5

A[I] = A[I+2] + 1

FOR I = 0 to 5

A[I] = A[I] + 1
 0dv

 1dv

 2dv

     *2,1  dv

Multi-Dimensional Dependence

FOR I = 1 to n

FOR J = 1 to n

A[I, J] = A[I, J-1] + 1

J

I











1

0
dv

Multi-Dimensional Dependence

FOR I = 1 to n

FOR J = 1 to n

A[I, J] = A[I, J-1] + 1

FOR I = 1 to n

FOR J = 1 to n

A[I, J] = A[I+1, J] + 1

J

I

J

I











1

0
dv











0

1
dv

Outline

• Dependence Analysis

• Increasing Parallelization Opportunities

What is the Dependence?

FOR I = 1 to n

FOR J = 1 to n

A[I, J] = A[I-1, J+1] + 1

J

I

0 1 2 3 4 5
0

1

2

3

4

What is the Dependence?

FOR I = 1 to n

FOR J = 1 to n

A[I, J] = A[I-1, J+1] + 1

J

I

0 1 2 3 4 5
0

1

2

3

4

What is the Dependence?

FOR I = 1 to n

FOR J = 1 to n

A[I, J] = A[I-1, J+1] + 1

J

I













1

1
dv

What is the Dependence?

FOR I = 1 to n

FOR J = 1 to n

A[I, J] = A[I-1, J+1] + 1

FOR I = 1 to n

FOR J = 1 to n

B[I] = B[I-1] + 1

J

I

J

I

What is the Dependence?

FOR I = 1 to n

FOR J = 1 to n

A[I, J] = A[I-1, J+1] + 1

FOR I = 1 to n

FOR J = 1 to n

B[I] = B[I-1] + 1

J

I

J

I

dv=[1, -1]












1

1
dv










































*

1
,

3

1
,

2

1
,

1

1
dv

FOR i = 1 to N-1

FOR j = 1 to N-1

A[i,j] = A[i,j-1] + A[i-1,j];

What is the Dependence?

J

I



















1

0
,

0

1
dv

Recognizing FORALL Loops

• Find data dependences in loop
– For every pair of array acceses to the same array

If the first access has at least one dynamic instance (an iteration)
in which it refers to a location in the array that the second access
also refers to in at least one of the later dynamic instances
(iterations).

Then there is a data dependence between the statements

– (Note that same array can refer to itself – output dependences)

• Definition
– Loop-carried dependence:

dependence that crosses a loop boundary

• If there are no loop carried dependences  parallelizable

Data Dependence Analysis

• I: Distance Vector method

• II: Integer Programming

Distance Vector Method

• The ith loop is parallelizable for all
dependence d = [d1,…,di,..dn]
either

one of d1,…,di-1 is > 0
or

all d1,…,di = 0

Is the Loop Parallelizable?

FOR I = 0 to 5

A[I] = A[0] + 1

FOR I = 0 to 5

A[I+1] = A[I] + 1

FOR I = 0 to 5

A[I] = A[I+2] + 1

FOR I = 0 to 5

A[I] = A[I] + 1
 0dv

 1dv

 2dv

 *dv

Yes

No

No

No

Are the Loops Parallelizable?

FOR I = 1 to n

FOR J = 1 to n

A[I, J] = A[I, J-1] + 1

FOR I = 1 to n

FOR J = 1 to n

A[I, J] = A[I+1, J] + 1

J

I

J

I











1

0
dv











0

1
dv

Yes
No

No
Yes

Are the Loops Parallelizable?

FOR I = 1 to n

FOR J = 1 to n

A[I, J] = A[I-1, J+1] + 1

FOR I = 1 to n

FOR J = 1 to n

B[I] = B[I-1] + 1

J

I

J

I

dv=[1, -1]












1

1
dv











*

1
dv

No
Yes

No
Yes

Integer Programming Method

• Example
FOR I = 0 to 5

A[I+1] = A[I] + 1

• Is there a loop-carried dependence between A[I+1] and A[I]
– Are there two distinct iterations iw and ir such that A[iw+1] is the

same location as A[ir]

–  integers iw, ir 0 ≤ iw, ir ≤ 5 iw  ir iw+ 1 = ir

• Is there a dependence between A[I+1] and A[I+1]
– Are there two distinct iterations i1 and i2 such that A[i1+1] is the

same location as A[i2+1]

–  integers i1, i2 0 ≤ i1, i2 ≤ 5 i1  i2 i1+ 1 = i2 +1

Integer Programming Method

• Formulation

–  an integer vector i̅ such that Â i̅ ≤ b̅ where
Â is an integer matrix and b̅ is an integer vector

FOR I = 0 to 5

A[I+1] = A[I] + 1

Iteration Space

• N deep loops  n-dimensional

discrete cartesian space

• Affine loop nest  Iteration

space as a set of linear
inequalities

0 ≤ I

I ≤ 6

I ≤ J

J ≤ 7

0 1 2 3 4 5 6 7  J
0

1

2

3

4

5

6

I 

FOR I = 0 to 5

A[I+1] = A[I] + 1

Integer Programming Method

• Formulation

–  an integer vector i̅ such that Â i̅ ≤ b̅ where
Â is an integer matrix and b̅ is an integer vector

• Our problem formulation for A[i] and A[i+1]

–  integers iw, ir 0 ≤ iw, ir ≤ 5 iw  ir iw+ 1 = ir
– iw  ir is not an affine function

• divide into 2 problems

• Problem 1 with iw < ir and problem 2 with ir < iw

• If either problem has a solution  there exists a dependence

– How about iw+ 1 = ir
• Add two inequalities to single problem

iw+ 1 ≤ ir, and ir ≤ iw+ 1

FOR I = 0 to 5

A[I+1] = A[I] + 1

Integer Programming Formulation

• Problem 1
0 ≤ iw
iw ≤ 5

0 ≤ ir
ir ≤ 5

iw < ir
iw+ 1 ≤ ir
ir ≤ iw+ 1

FOR I = 0 to 5

A[I+1] = A[I] + 1

Integer Programming Formulation

• Problem 1
0 ≤ iw  -iw ≤ 0

iw ≤ 5  iw ≤ 5

0 ≤ ir  -ir ≤ 0

ir ≤ 5  ir ≤ 5

iw < ir  iw - ir ≤ -1

iw+ 1 ≤ ir  iw - ir ≤ -1

ir ≤ iw+ 1  -iw + ir ≤ 1

FOR I = 0 to 5

A[I+1] = A[I] + 1

Integer Programming Formulation

• Problem 1
0 ≤ iw  -iw ≤ 0 -1 0 0

iw ≤ 5  iw ≤ 5 1 0 5

0 ≤ ir  -ir ≤ 0 0 -1 0

ir ≤ 5  ir ≤ 5 0 1 5

iw < ir  iw - ir ≤ -1 1 -1 -1

iw+ 1 ≤ ir  iw - ir ≤ -1 1 -1 -1

ir ≤ iw+ 1  -iw + ir ≤ 1 -1 1 1

• and problem 2 with ir < iw

Â b̅

Generalization
• An affine loop nest

FOR i1 = fl1(c1…ck) to Iu1(c1…ck)

FOR i2 = fl2(i1,c1…ck) to Iu2(i1,c1…ck)

……

FOR in = fln(i1…in-1,c1…ck) to Iun(i1…in-1,c1…ck)

A[fa1(i1…in,c1…ck), fa2(i1…in,c1…ck),…,fam(i1…in,c1…ck)]

• Solve 2*n problems of the form
• i1 = j1, i2 = j2,…… in-1 = jn-1, in < jn

• i1 = j1, i2 = j2,…… in-1 = jn-1, jn < in

• i1 = j1, i2 = j2,…… in-1 < jn-1

• i1 = j1, i2 = j2,…… jn-1 < in-1
…………………

• i1 = j1, i2 < j2

• i1 = j1, j2 < i2

• i1 < j1

• j1 < i1

Outline

• Why Parallelism

• Parallel Execution

• Parallelizing Compilers

• Dependence Analysis

• Increasing Parallelization Opportunities

Increasing Parallelization
Opportunities

• Scalar Privatization

• Reduction Recognition

• Induction Variable Identification

• Array Privatization

• Loop Transformations

• Granularity of Parallelism

• Interprocedural Parallelization

Scalar Privatization

• Example
FOR i = 1 to n

X = A[i] * 3;

B[i] = X;

• Is there a loop carried dependence?

• What is the type of dependence?

Privatization

• Analysis:
– Any anti- and output- loop-carried dependences

• Eliminate by assigning in local context
FOR i = 1 to n

integer Xtmp;

Xtmp = A[i] * 3;

B[i] = Xtmp;

• Eliminate by expanding into an array
FOR i = 1 to n

Xtmp[i] = A[i] * 3;

B[i] = Xtmp[i];

Privatization

• Need a final assignment to maintain the correct
value after the loop nest

• Eliminate by assigning in local context
FOR i = 1 to n

integer Xtmp;

Xtmp = A[i] * 3;

B[i] = Xtmp;

if(i == n) X = Xtmp

• Eliminate by expanding into an array
FOR i = 1 to n

Xtmp[i] = A[i] * 3;

B[i] = Xtmp[i];

X = Xtmp[n];

Another Example

• How about loop-carried true
dependences?

• Example
FOR i = 1 to n

X = X + A[i];

• Is this loop parallelizable?

Reduction Recognition

• Reduction Analysis:
– Only associative operations

– The result is never used within the loop

• Transformation
Integer Xtmp[NUMPROC];

Barrier();

FOR i = myPid*Iters to MIN((myPid+1)*Iters, n)

Xtmp[myPid] = Xtmp[myPid] + A[i];

Barrier();

If(myPid == 0) {

FOR p = 0 to NUMPROC-1

X = X + Xtmp[p];

…

Induction Variables

• Example
FOR i = 0 to N

A[i] = 2^i;

• After strength reduction
t = 1

FOR i = 0 to N

A[i] = t;

t = t*2;

• What happened to loop carried dependences?

• Need to do opposite of this!

– Perform induction variable analysis

– Rewrite IVs as a function of the loop variable

Array Privatization

• Similar to scalar privatization

• However, analysis is more complex

– Array Data Dependence Analysis:
Checks if two iterations access the same location

– Array Data Flow Analysis:
Checks if two iterations access the same value

• Transformations

– Similar to scalar privatization

– Private copy for each processor or expand with an
additional dimension

• A loop may not be parallel as is

• Example
FOR i = 1 to N-1

FOR j = 1 to N-1

A[i,j] = A[i,j-1] + A[i-1,j];

Loop Transformations
J

I

• A loop may not be parallel as is

• Example
FOR i = 1 to N-1

FOR j = 1 to N-1

A[i,j] = A[i,j-1] + A[i-1,j];

• After loop Skewing
FOR i = 1 to 2*N-3

FORPAR j = max(1,i-N+2) to min(i, N-1)

A[i-j+1,j] = A[i-j+1,j-1] + A[i-j,j];

Loop Transformations
J

I

J

I



























old

old

new

new

j

i

j

i

10

11

Granularity of Parallelism

• Example
FOR i = 1 to N-1

FOR j = 1 to N-1

A[i,j] = A[i,j] + A[i-1,j];

• Gets transformed into
FOR i = 1 to N-1

Barrier();

FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)

A[i,j] = A[i,j] + A[i-1,j];

Barrier();

• Inner loop parallelism can be expensive
– Startup and teardown overhead of parallel regions

– Lot of synchronization

– Can even lead to slowdowns

J

I

Granularity of Parallelism

• Inner loop parallelism can be expensive

• Solutions

– Don’t parallelize if the amount of work within
the loop is too small

or

– Transform into outer-loop parallelism

Outer Loop Parallelism

• Example
FOR i = 1 to N-1

FOR j = 1 to N-1

A[i,j] = A[i,j] + A[i-1,j];

• After Loop Transpose
FOR j = 1 to N-1

FOR i = 1 to N-1

A[i,j] = A[i,j] + A[i-1,j];

• Get mapped into
Barrier();

FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)

FOR i = 1 to N-1

A[i,j] = A[i,j] + A[i-1,j];

Barrier();

J

I

I

J

Unimodular Transformations

• Interchange, reverse and skew

• Use a matrix transformation
Inew = A Iold

• Interchange

• Reverse

• Skew



























old

old

new

new

j

i

j

i

01

10



























old

old

new

new

j

i

j

i

10

01



























old

old

new

new

j

i

j

i

10

11

Legality of Transformations

• Unimodular transformation with matrix A is valid iff.
For all dependence vectors v

the first non-zero in Av is positive
• Example

FOR i = 1 to N-1

FOR j = 1 to N-1

A[i,j] = A[i,j] + A[i-1,j];

• Interchange

• Reverse

• Skew











01

10
A











10

01
A











10

11
A




























10

01

1

0
,

0

1
dv



























01

10

10

01

01

10



























10

01

10

01

10

01



























10

11

10

01

10

11







Interprocedural Parallelization

• Function calls will make a loop unparallelizatble

– Reduction of available parallelism

– A lot of inner-loop parallelism

• Solutions

– Interprocedural Analysis

– Inlining

Interprocedural Parallelization

• Issues
– Same function reused many times
– Analyze a function on each trace  Possibly exponential
– Analyze a function once  unrealizable path problem

• Interprocedural Analysis
– Need to update all the analysis
– Complex analysis
– Can be expensive

• Inlining
– Works with existing analysis
– Large code bloat  can be very expensive

HashSet h;

for i = 1 to n

int v = compute(i);

h.insert(i);

Are iterations independent?

Can you still execute the loop in parallel?

Do all parallel executions give same result?

Summary

• Multicores are here

– Need parallelism to keep the performance gains

– Programmer defined or compiler extracted parallelism

• Automatic parallelization of loops with arrays

– Requires Data Dependence Analysis

– Iteration space & data space abstraction

– An integer programming problem

• Many optimizations that’ll increase parallelism

