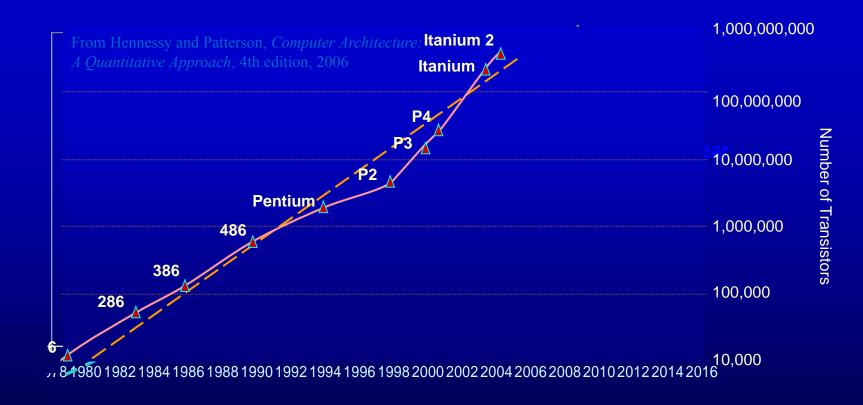


Parallelization

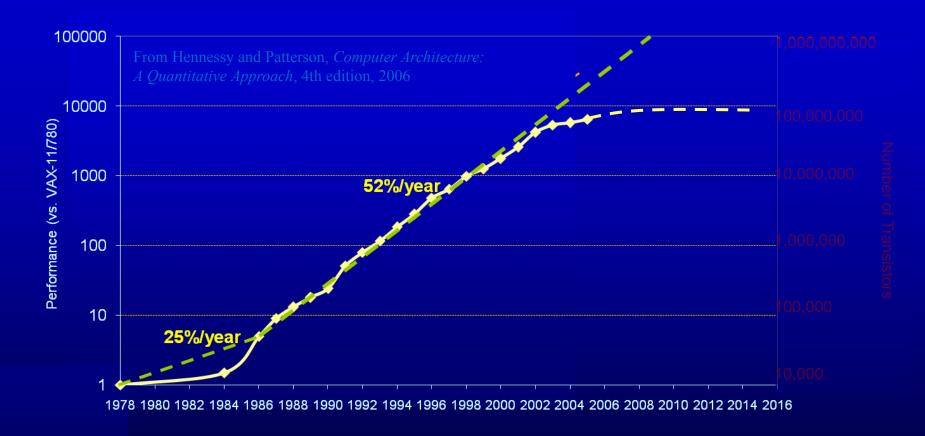
Outline

- Why Parallelism
- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities

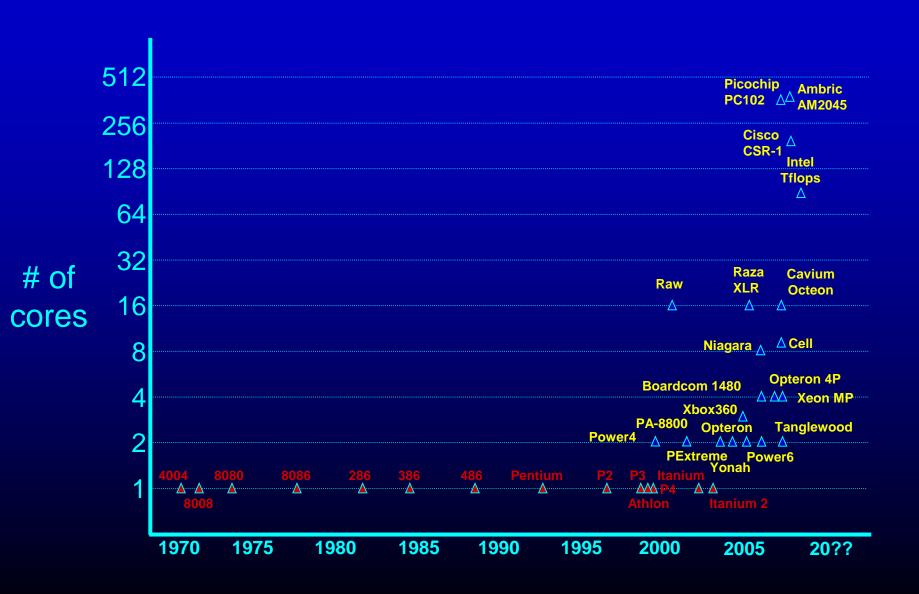
Moore's Law



Uniprocessor Performance (SPECint)



Multicores Are Here!



Issues with Parallelism

Amdhal's Law

- Any computation can be analyzed in terms of a portion that must be executed sequentially, Ts, and a portion that can be executed in parallel, Tp. Then for n processors:
- T(n) = Ts + Tp/n
- $T(\infty) = Ts$, thus maximum speedup (Ts + Tp) /Ts

Load Balancing

 The work is distributed among processors so that all processors are kept busy when parallel task is executed.

Granularity

 The size of the parallel regions between synchronizations or the ratio of computation (useful work) to communication (overhead).

Outline

- Why Parallelism
- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities

Types of Parallelism

 Instruction Level Parallelism (ILP)

→ Scheduling and Hardware

 Task Level Parallelism (TLP) → Mainly by hand

- Loop Level Parallelism
 (LLP) or Data Parallelism
- → Hand or Compiler Generated

Pipeline Parallelism

→ Hardware or Streaming

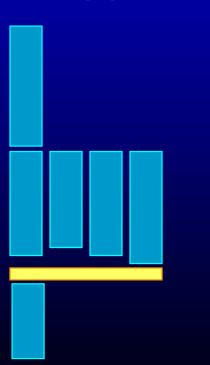
 Divide and Conquer Parallelism → Recursive functions

Why Loops?

- 90% of the execution time in 10% of the code
 - Mostly in loops
- If parallel, can get good performance
 - Load balancing
- Relatively easy to analyze

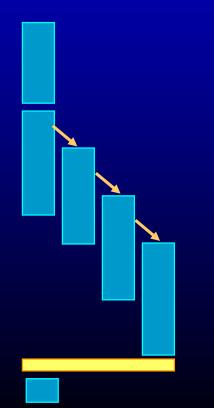
Programmer Defined Parallel Loop

- FORALL
 - No "loop carried dependences"
 - Fully parallel



FORACROSS

Some "loop carried dependences"



Parallel Execution

Example

```
FORPAR I = 0 to N

A[I] = A[I] + 1
```

Block Distribution: Program gets mapped into

```
Iters = ceiling(N/NUMPROC);
FOR P = 0 to NUMPROC-1
  FOR I = P*Iters to MIN((P+1)*Iters, N)
  A[I] = A[I] + 1
```

SPMD (Single Program, Multiple Data) Code

```
If (myPid == 0) {
    ...
    Iters = ceiling(N/NUMPROC);
}
Barrier();
FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)
    A[I] = A[I] + 1
Barrier();
```

Parallel Execution

Example

```
FORPAR I = 0 to N

A[I] = A[I] + 1
```

Block Distribution: Program gets mapped into

```
Iters = ceiling(N/NUMPROC);
FOR P = 0 to NUMPROC-1
  FOR I = P*Iters to MIN((P+1)*Iters, N)
  A[I] = A[I] + 1
```

Code fork a function

```
Iters = ceiling(N/NUMPROC);
FOR P = 0 to NUMPROC - 1 { ParallelExecute(func1, P); }
BARRIER(NUMPROC);
void func1(integer myPid)
{
   FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)
    A[I] = A[I] + 1
}
```

Parallel Thread Basics

- Create separate threads
 - Create an OS thread
 - (hopefully) it will be run on a separate core
 - pthread_create(&thr, NULL, &entry_point, NULL)
 - Overhead in thread creation
 - Create a separate stack
 - Get the OS to allocate a thread
- Thread pool
 - Create all the threads (= num cores) at the beginning
 - Keep N-1 idling on a barrier, while sequential execution
 - Get them to run parallel code by each executing a function
 - Back to the barrier when parallel region is done

Outline

- Why Parallelism
- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities

Parallelizing Compilers

Finding FORALL Loops out of FOR loops

Examples

```
FOR I = 0 to 5

A[I] = A[I] + 1

FOR I = 0 to 5

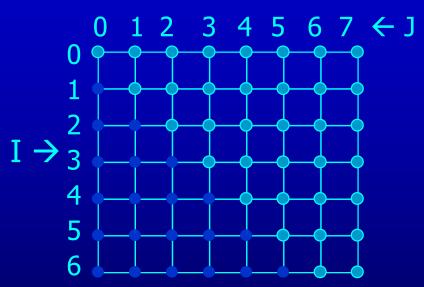
A[I] = A[I+6] + 1

For I = 0 to 5

A[2*I] = A[2*I + 1] + 1
```

- N deep loops → N-dimensional discrete iteration space
 - Normalized loops: assume step size = 1

FOR
$$I = 0$$
 to 6
FOR $J = I$ to 7

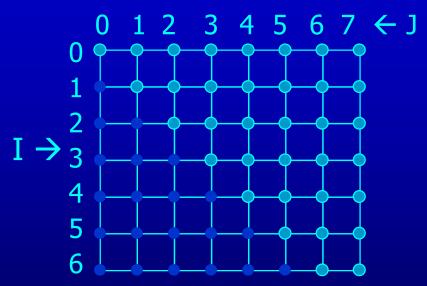


Iterations are represented as coordinates in iteration space

$$-\overline{i} = [i_1, i_2, i_3, ..., i_n]$$

- N deep loops → N-dimensional discrete iteration space
 - Normalized loops: assume step size = 1

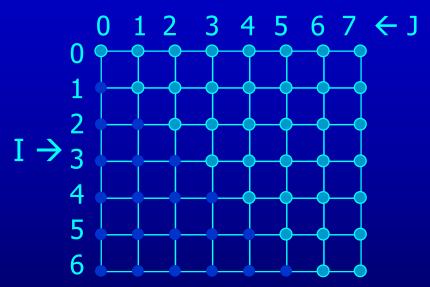
```
FOR I = 0 to 6
FOR J = I to 7
```



- Iterations are represented as coordinates in iteration space
- Sequential execution order of iterations → Lexicographic order

- N deep loops → N-dimensional discrete iteration space
 - Normalized loops: assume step size = 1

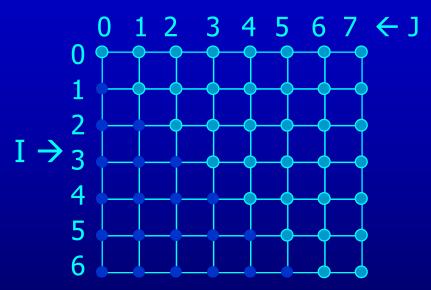
FOR
$$I = 0$$
 to 6
FOR $J = I$ to 7



- Iterations are represented as coordinates in iteration space
- Sequential execution order of iterations → Lexicographic order
- Iteration \overline{i} is lexicograpically less than $\overline{\jmath}$, $\overline{i} < \overline{\jmath}$ iff there exists c s.t. $i_1 = j_1$, $i_2 = j_2$,... $i_{c-1} = j_{c-1}$ and $i_c < j_c$

- N deep loops → N-dimensional discrete iteration space
 - Normalized loops: assume step size = 1

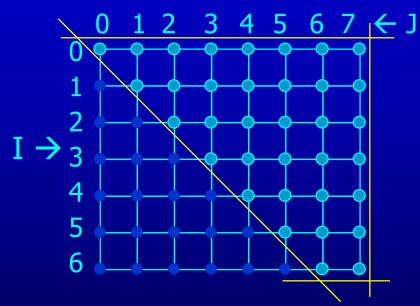
FOR
$$I = 0$$
 to 6
FOR $J = I$ to 7



- An affine loop nest
 - Loop bounds are integer linear functions of constants, loop constant variables and outer loop indexes
 - Array accesses are integer linear functions of constants, loop constant variables and loop indexes

- N deep loops → N-dimensional discrete iteration space
 - Normalized loops: assume step size = 1

FOR
$$I = 0$$
 to 6
FOR $J = I$ to 7



Affine loop nest → Iteration space as a set of linear inequalities

$$0 \le I$$

$$I \le 6$$

$$I \le J$$

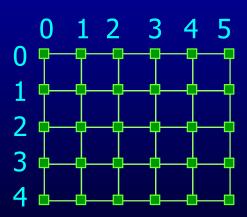
$$J \le 7$$

Data Space

M dimensional arrays → M-dimensional discrete cartesian space
 – a hypercube

Integer A(10)

Float B(5, 6)



Dependences

True dependence

```
a =
= a
```

Anti dependence

```
= a
a =
```

Output dependence

```
a =
a =
```

Definition:

Data dependence exists for a dynamic instance i and j iff

- either i or j is a write operation
- i and j refer to the same variable
- i executes before j
- How about array accesses within loops?

Outline

- Why Parallelism
- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities

FOR
$$I = 0$$
 to 5
A[I] = A[I] + 1

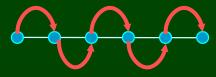
Iteration Space 0 1 2 3 4 5

= A[I]

A[I]

FOR
$$I = 0$$
 to 5
A[I] = A[I] + 1



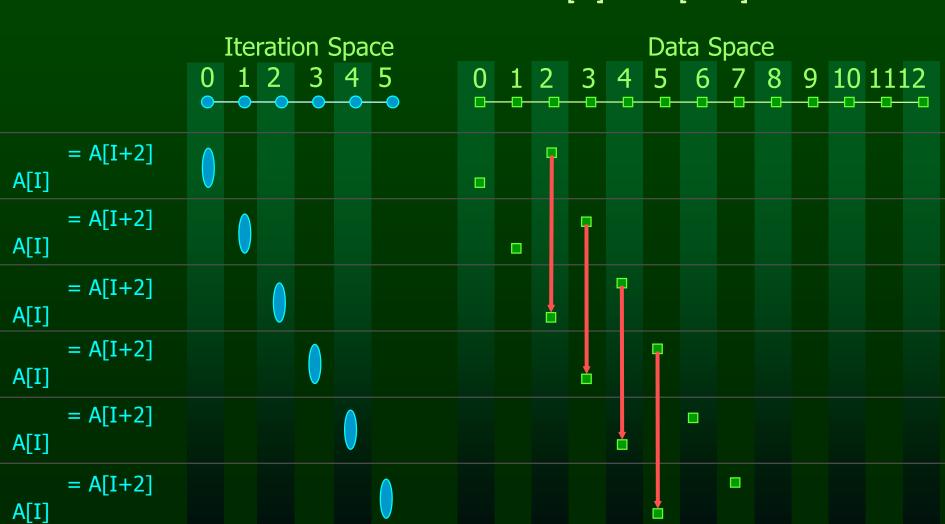


= A[I]

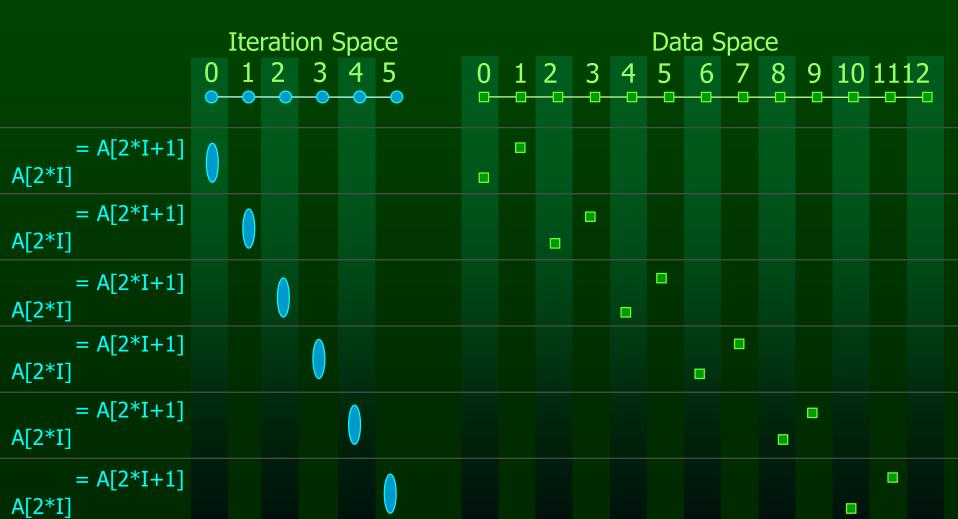
A[I+1]

FOR I = 0 to 5
A[I+1] = A[I] + 1

FOR
$$I = 0$$
 to 5
A[I] = A[I+2] + 1



FOR I = 0 to 5 A[2*I] = A[2*I+1] + 1



Distance Vectors

 A loop has a distance d if there exist a data dependence from iteration i to j and d = j-i

$$dv = [0]$$

FOR
$$I = 0$$
 to 5
A[I] = A[I] + 1

$$dv = [1]$$

$$dv = [2]$$

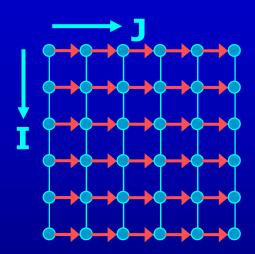
FOR
$$I = 0$$
 to 5
A[I] = A[I+2] + 1

$$dv = [1], \quad [2] \quad \dots \quad = \quad [*]$$

FOR
$$I = 0$$
 to 5
A[I] = A[0] + 1

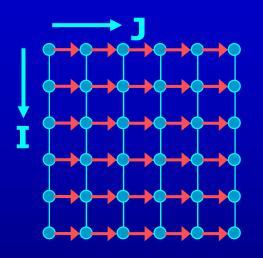
Multi-Dimensional Dependence

$$dv = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

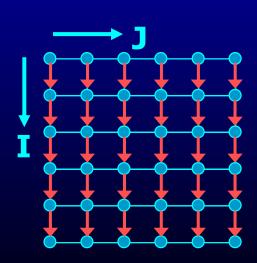


Multi-Dimensional Dependence

$$dv = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

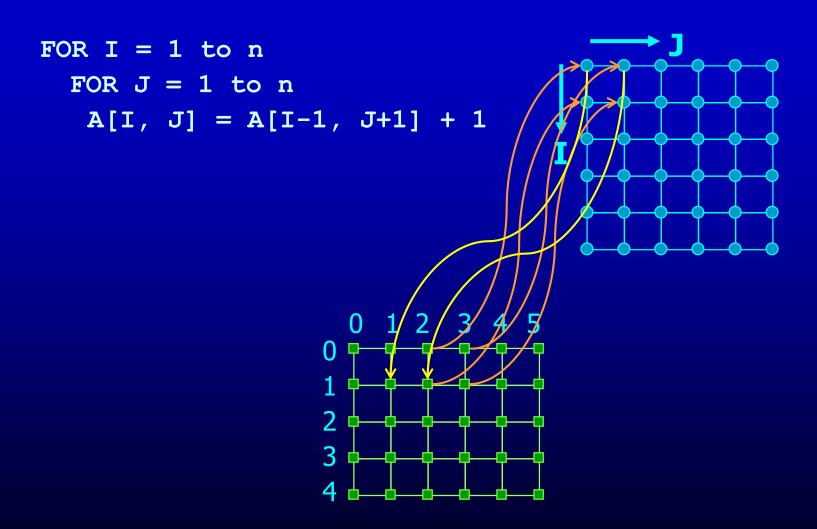


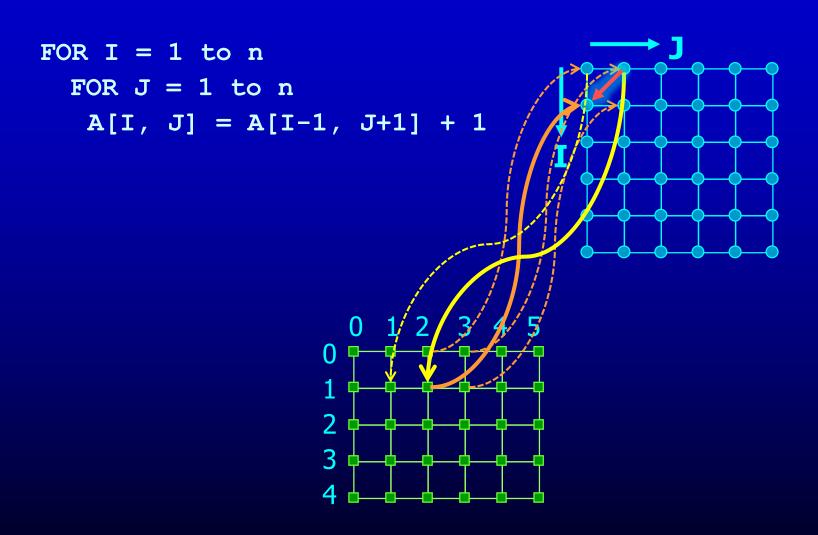
$$dv = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$



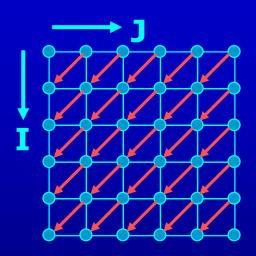
Outline

- Dependence Analysis
- Increasing Parallelization Opportunities

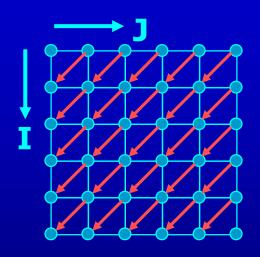


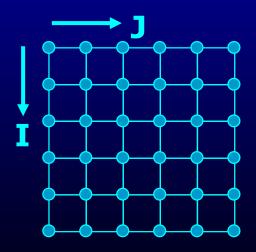


$$dv = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$



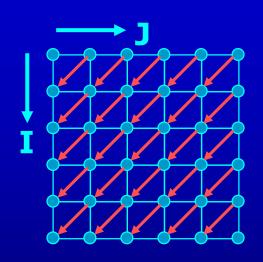
```
FOR I = 1 to n
FOR J = 1 to n
A[I, J] = A[I-1, J+1] + 1
```



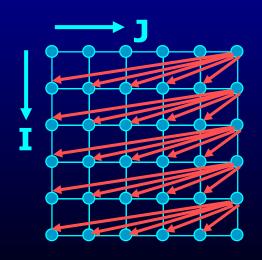


What is the Dependence?

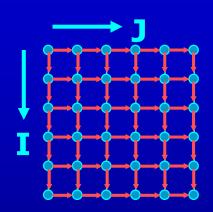
$$dv = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$



$$dv = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ -3 \end{bmatrix}, \dots = \begin{bmatrix} 1 \\ * \end{bmatrix}$$



What is the Dependence?



$$dv = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Recognizing FORALL Loops

- Find data dependences in loop
 - For every pair of array acceses to the same array
 If the first access has at least one dynamic instance (an iteration) in which it refers to a location in the array that the second access also refers to in at least one of the later dynamic instances (iterations).
 - Then there is a data dependence between the statements
 - (Note that same array can refer to itself output dependences)
- Definition
 - Loop-carried dependence:
 dependence that crosses a loop boundary
- If there are no loop carried dependences → parallelizable

Data Dependence Analysis

- I: Distance Vector method
- II: Integer Programming

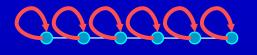
Distance Vector Method

• The ith loop is parallelizable for all dependence $d = [d_1,...,d_i,...d_n]$ either one of $d_1,...,d_{i-1}$ is > 0 or all $d_1,...,d_i = 0$

Is the Loop Parallelizable?

$$dv = [0]$$

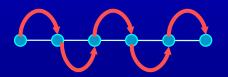
Yes



FOR
$$I = 0$$
 to 5
A[I] = A[I] + 1

$$dv = [1]$$

No



$$dv = [2]$$

No

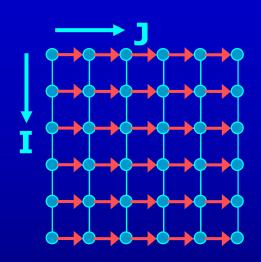
$$dv = [*]$$

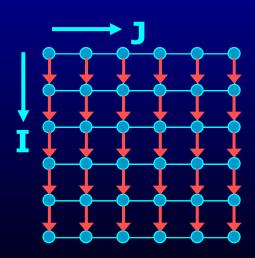
No

FOR
$$I = 0$$
 to 5
A[I] = A[0] + 1

Are the Loops Parallelizable?

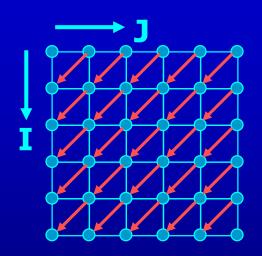
$$dv = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 Yes No

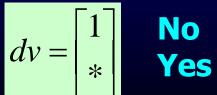


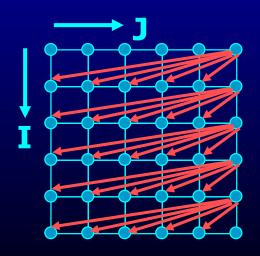


Are the Loops Parallelizable?

$$dv = \begin{vmatrix} 1 \\ -1 \end{vmatrix}$$
 No Yes







Integer Programming Method

Example

```
FOR I = 0 to 5
A[I+1] = A[I] + 1
```

- Is there a loop-carried dependence between A[I+1] and A[I]
 - Are there two distinct iterations i_w and i_r such that $A[i_w+1]$ is the same location as $A[i_r]$
 - \exists integers i_w , i_r 0 \leq i_w , $i_r \leq$ 5 $i_w \neq i_r$ $i_w + 1 = i_r$
- Is there a dependence between A[I+1] and A[I+1]
 - Are there two distinct iterations i_1 and i_2 such that $A[i_1+1]$ is the same location as $A[i_2+1]$
 - ∃ integers i_1 , i_2 0 ≤ i_1 , i_2 ≤ 5 $i_1 \neq i_2$ $i_1 + 1 = i_2 + 1$

Integer Programming Method

FOR
$$I = 0$$
 to 5
A[I+1] = A[I] + 1

- Formulation
 - ∃ an integer vector ⊤ such that Â⊤ ≤ b̄ where
 Â is an integer matrix and b̄ is an integer vector

Iteration Space

 N deep loops → n-dimensional discrete cartesian space

Affine loop nest

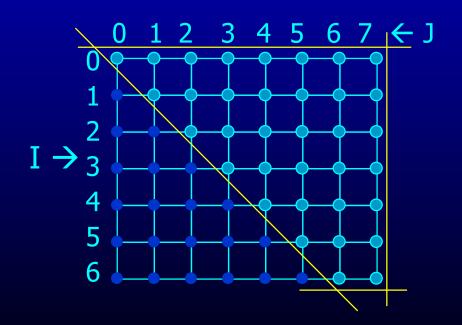
 Iteration space as a set of linear inequalities

$$0 \le I$$

$$I \le 6$$

$$I \le J$$

$$J \le 7$$



Integer Programming Method

FOR
$$I = 0$$
 to 5
A[I+1] = A[I] + 1

- Formulation
 - ∃ an integer vector \top such that $\hat{A} \top \leq \overline{b}$ where \hat{A} is an integer matrix and \overline{b} is an integer vector
- Our problem formulation for A[i] and A[i+1]
 - \exists integers i_w , i_r $0 \le i_w$, $i_r \le 5$ $i_w \ne i_r$ $i_w + 1 = i_r$
 - $-i_w \neq i_r$ is not an affine function
 - divide into 2 problems
 - Problem 1 with i_w < i_r and problem 2 with i_r < i_w
 - If either problem has a solution → there exists a dependence
 - How about $i_w + 1 = i_r$
 - Add two inequalities to single problem $i_w + 1 \le i_r$, and $i_r \le i_w + 1$

Integer Programming Formulation

• Problem 1

$$0 \le i_{w}$$
 $i_{w} \le 5$
 $0 \le i_{r}$
 $i_{r} \le 5$
 $i_{w} < i_{r}$
 $i_{w} + 1 \le i_{r}$
 $i_{r} \le i_{w} + 1$

Integer Programming Formulation

• Problem 1

$$\begin{array}{lll} 0 \leq i_{w} & \rightarrow & -i_{w} \leq 0 \\ i_{w} \leq 5 & \rightarrow & i_{w} \leq 5 \\ 0 \leq i_{r} & \rightarrow & -i_{r} \leq 0 \\ i_{r} \leq 5 & \rightarrow & i_{r} \leq 5 \\ i_{w} < i_{r} & \rightarrow & i_{w} - i_{r} \leq -1 \\ i_{w} + 1 \leq i_{r} & \rightarrow & i_{w} - i_{r} \leq -1 \\ i_{r} \leq i_{w} + 1 & \rightarrow & -i_{w} + i_{r} \leq 1 \end{array}$$

FOR
$$I = 0$$
 to 5
A[I+1] = A[I] + 1

Integer Programming Formulation

• Problem 1

$$0 \le i_{w} \longrightarrow -i_{w} \le 0$$

$$i_{w} \le 5 \longrightarrow i_{w} \le 5$$

$$0 \le i_{r} \longrightarrow -i_{r} \le 0$$

$$i_{r} \le 5 \longrightarrow i_{r} \le 5$$

$$i_{w} < i_{r} \longrightarrow i_{w} - i_{r} \le -1$$

$$i_{w} + 1 \le i_{r} \longrightarrow i_{w} - i_{r} \le -1$$

$$i_{r} \le i_{w} + 1 \longrightarrow -i_{w} + i_{r} \le 1$$

0 -1 0 -1 -1

0

0

5

-1

-1

and problem 2 with i_r < i_w

Generalization

An affine loop nest

```
FOR i_1 = f_{11}(c_1...c_k) to I_{u1}(c_1...c_k)

FOR i_2 = f_{12}(i_1, c_1...c_k) to I_{u2}(i_1, c_1...c_k)

.....

FOR i_n = f_{1n}(i_1...i_{n-1}, c_1...c_k) to I_{un}(i_1...i_{n-1}, c_1...c_k)

A[f_{a1}(i_1...i_n, c_1...c_k), f_{a2}(i_1...i_n, c_1...c_k), ..., f_{am}(i_1...i_n, c_1...c_k)]
```

Solve 2*n problems of the form

```
i<sub>1</sub> = j<sub>1</sub>, i<sub>2</sub> = j<sub>2</sub>,..... i<sub>n-1</sub> = j<sub>n-1</sub>, i<sub>n</sub> < j<sub>n</sub>
i<sub>1</sub> = j<sub>1</sub>, i<sub>2</sub> = j<sub>2</sub>,..... i<sub>n-1</sub> = j<sub>n-1</sub>, j<sub>n</sub> < i<sub>n</sub>
i<sub>1</sub> = j<sub>1</sub>, i<sub>2</sub> = j<sub>2</sub>,..... i<sub>n-1</sub> < j<sub>n-1</sub>
i<sub>1</sub> = j<sub>1</sub>, i<sub>2</sub> = j<sub>2</sub>,..... j<sub>n-1</sub> < i<sub>n-1</sub>
i<sub>1</sub> = j<sub>1</sub>, i<sub>2</sub> < j<sub>2</sub>
i<sub>1</sub> = j<sub>1</sub>, j<sub>2</sub> < i<sub>2</sub>
i<sub>1</sub> < j<sub>1</sub>
j<sub>1</sub> < i<sub>1</sub>
```

Outline

- Why Parallelism
- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities

Increasing Parallelization Opportunities

- Scalar Privatization
- Reduction Recognition
- Induction Variable Identification
- Array Privatization
- Loop Transformations
- Granularity of Parallelism
- Interprocedural Parallelization

Scalar Privatization

Example

```
FOR i = 1 to n

X = A[i] * 3;

B[i] = X;
```

- Is there a loop carried dependence?
- What is the type of dependence?

Privatization

- Analysis:
 - Any anti- and output- loop-carried dependences
- Eliminate by assigning in local context

```
FOR i = 1 to n
  integer Xtmp;
Xtmp = A[i] * 3;
B[i] = Xtmp;
```

Eliminate by expanding into an array

```
FOR i = 1 to n
   Xtmp[i] = A[i] * 3;
   B[i] = Xtmp[i];
```

Privatization

- Need a final assignment to maintain the correct value after the loop nest
- Eliminate by assigning in local context

```
FOR i = 1 to n
  integer Xtmp;
Xtmp = A[i] * 3;
B[i] = Xtmp;
if(i == n) X = Xtmp
```

Eliminate by expanding into an array

```
FOR i = 1 to n
   Xtmp[i] = A[i] * 3;
   B[i] = Xtmp[i];
X = Xtmp[n];
```

Another Example

- How about loop-carried true dependences?
- Example

```
FOR i = 1 to n

X = X + A[i];
```

Is this loop parallelizable?

Reduction Recognition

- Reduction Analysis:
 - Only associative operations
 - The result is never used within the loop

Transformation

```
Integer Xtmp[NUMPROC];
Barrier();
FOR i = myPid*Iters to MIN((myPid+1)*Iters, n)
        Xtmp[myPid] = Xtmp[myPid] + A[i];
Barrier();
If(myPid == 0) {
   FOR p = 0 to NUMPROC-1
        X = X + Xtmp[p];
```

Induction Variables

Example

```
FOR i = 0 to N
A[i] = 2^i;
```

After strength reduction

```
t = 1

FOR i = 0 to N

A[i] = t;

t = t*2;
```

- What happened to loop carried dependences?
- Need to do opposite of this!
 - Perform induction variable analysis
 - Rewrite IVs as a function of the loop variable

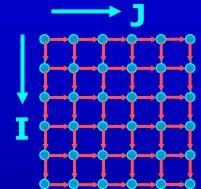
Array Privatization

- Similar to scalar privatization
- However, analysis is more complex
 - Array Data Dependence Analysis:
 Checks if two iterations access the same location
 - Array Data Flow Analysis:
 Checks if two iterations access the same value
- Transformations
 - Similar to scalar privatization
 - Private copy for each processor or expand with an additional dimension

Loop Transformations

- A loop may not be parallel as is
- Example

```
FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,j] = A[i,j-1] + A[i-1,j];
```



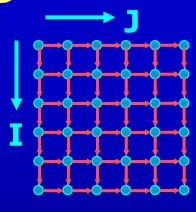
Loop Transformations

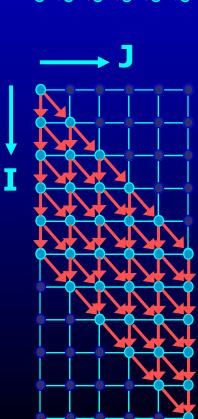
- A loop may not be parallel as is
- Example

```
FOR i = 1 to N-1
 FOR j = 1 to N-1
  A[i,j] = A[i,j-1] + A[i-1,j];
```

• After loop Skewing
$$\begin{bmatrix} i_{new} \\ j_{new} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i_{old} \\ j_{old} \end{bmatrix}$$

```
FOR i = 1 to 2*N-3
 FORPAR j = max(1,i-N+2) to min(i, N-1)
  A[i-j+1,j] = A[i-j+1,j-1] + A[i-j,j];
```





Granularity of Parallelism

Example

```
FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,j] = A[i,j] + A[i-1,j];
```

Gets transformed into

```
FOR i = 1 to N-1
    Barrier();
FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)
    A[i,j] = A[i,j] + A[i-1,j];
Barrier();
```

- Inner loop parallelism can be expensive
 - Startup and teardown overhead of parallel regions
 - Lot of synchronization
 - Can even lead to slowdowns

Granularity of Parallelism

Inner loop parallelism can be expensive

Solutions

 Don't parallelize if the amount of work within the loop is too small

or

Transform into outer-loop parallelism

Outer Loop Parallelism

Example

```
FOR i = 1 to N-1

FOR j = 1 to N-1

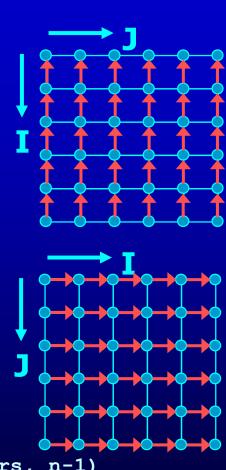
A[i,j] = A[i,j] + A[i-1,j];
```

After Loop Transpose

```
FOR j = 1 to N-1
FOR i = 1 to N-1
A[i,j] = A[i,j] + A[i-1,j];
```

Get mapped into

```
Barrier();
FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)
    FOR i = 1 to N-1
        A[i,j] = A[i,j] + A[i-1,j];
Barrier();
```



Unimodular Transformations

- Interchange, reverse and skew
- Use a matrix transformation

$$I_{new} = A I_{old}$$

• Interchange
$$\begin{bmatrix} i_{new} \\ j_{new} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} i_{old} \\ j_{old} \end{bmatrix}$$

Reverse

$$\begin{bmatrix} i_{new} \\ j_{new} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i_{old} \\ j_{old} \end{bmatrix}$$

Skew

$$\begin{bmatrix} i_{new} \\ j_{new} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i_{old} \\ j_{old} \end{bmatrix}$$

Legality of Transformations

- Unimodular transformation with matrix A is valid iff. For all dependence vectors v the first non-zero in Av is positive
- Example

$$dv = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad = \quad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

• Interchange
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Reverse

$$A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Interprocedural Parallelization

- Function calls will make a loop unparallelizatble
 - Reduction of available parallelism
 - A lot of inner-loop parallelism
- Solutions
 - Interprocedural Analysis
 - Inlining

Interprocedural Parallelization

Issues

- Same function reused many times
- Analyze a function on each trace → Possibly exponential
- Analyze a function once → unrealizable path problem

Interprocedural Analysis

- Need to update all the analysis
- Complex analysis
- Can be expensive

Inlining

- Works with existing analysis
- Large code bloat → can be very expensive

```
HashSet h;
for i = 1 to n
  int v = compute(i);
  h.insert(i);
```

Are iterations independent?

Can you still execute the loop in parallel?

Do all parallel executions give same result?

Summary

- Multicores are here
 - Need parallelism to keep the performance gains
 - Programmer defined or compiler extracted parallelism
- Automatic parallelization of loops with arrays
 - Requires Data Dependence Analysis
 - Iteration space & data space abstraction
 - An integer programming problem
- Many optimizations that'll increase parallelism