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Multicores Are Here!

1985 199019801970 1975 1995 2000

4004

8008

80868080 286 386 486 Pentium P2 P3
P4
Itanium

Itanium 2

2005 20??

# of

cores

1

2

4

8

16

32

64

128

256

512

Athlon

Raw

Power4
Opteron

Power6

Niagara

Yonah
PExtreme

Tanglewood

Cell

Intel

Tflops

Xbox360

Cavium

Octeon

Raza

XLR

PA-8800

Cisco

CSR-1

Picochip

PC102

Boardcom 1480
Opteron 4P

Xeon MP

Ambric

AM2045



Issues with Parallelism
• Amdhal’s Law

– Any computation can be analyzed in terms of a portion that 
must be executed sequentially, Ts, and a portion that can be 
executed in parallel, Tp. Then for n processors:

– T(n) = Ts + Tp/n

– T() = Ts, thus maximum speedup (Ts + Tp) /Ts

• Load Balancing
– The work is distributed among processors so that all processors 

are kept busy when parallel task is executed. 

• Granularity
– The size of the parallel regions between synchronizations or 

the ratio of computation (useful work) to communication 
(overhead).
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Types of Parallelism

• Instruction Level 
Parallelism (ILP)

• Task Level Parallelism 
(TLP)

• Loop Level Parallelism 
(LLP) or Data Parallelism

• Pipeline Parallelism

• Divide and Conquer 
Parallelism

 Scheduling and Hardware

 Mainly by hand

 Hand or Compiler Generated

 Hardware or Streaming

 Recursive functions



Why Loops?

• 90% of the execution time in 10% of the code

– Mostly in loops

• If parallel, can get good performance

– Load balancing 

• Relatively easy to analyze 



Programmer Defined Parallel Loop

• FORALL 

– No “loop carried 
dependences”

– Fully parallel

• FORACROSS

– Some “loop carried 
dependences”



Parallel Execution

• Example
FORPAR I = 0 to N

A[I] = A[I] + 1

• Block Distribution: Program gets mapped into
Iters = ceiling(N/NUMPROC);

FOR P = 0 to NUMPROC-1

FOR I = P*Iters to MIN((P+1)*Iters, N)

A[I] = A[I] + 1

• SPMD (Single Program, Multiple Data) Code
If(myPid == 0) {

…

Iters = ceiling(N/NUMPROC);

}

Barrier();

FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)

A[I] = A[I] + 1

Barrier(); 



Parallel Execution

• Example
FORPAR I = 0 to N

A[I] = A[I] + 1

• Block Distribution: Program gets mapped into
Iters = ceiling(N/NUMPROC);

FOR P = 0 to NUMPROC-1

FOR I = P*Iters to MIN((P+1)*Iters, N)

A[I] = A[I] + 1

• Code fork a function
Iters = ceiling(N/NUMPROC);

FOR P = 0 to NUMPROC – 1 { ParallelExecute(func1, P); } 

BARRIER(NUMPROC);

void func1(integer myPid)

{ 

FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)

A[I] = A[I] + 1

} 



Parallel Thread Basics

• Create separate threads

– Create an OS thread 

• (hopefully) it will be run on a separate core

– pthread_create(&thr, NULL, &entry_point, NULL)

– Overhead in thread creation 

• Create a separate stack

• Get the OS to allocate a thread

• Thread pool

– Create all the threads (= num cores) at the beginning

– Keep N-1 idling on a barrier, while sequential execution

– Get them to run parallel code by each executing a 
function 

– Back to the barrier when parallel region is done 
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Parallelizing Compilers

• Finding FORALL Loops out of FOR loops

• Examples
FOR I = 0 to 5

A[I] = A[I] + 1

FOR I = 0 to 5

A[I] = A[I+6] + 1

For I = 0 to 5

A[2*I] = A[2*I + 1] + 1



Iteration Space
• N deep loops  N-dimensional discrete iteration space

– Normalized loops: assume step size = 1

FOR I = 0 to 6

FOR J = I to 7

• Iterations are represented as coordinates in iteration space
– i̅ = [i1, i2, i3,…, in]
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Iteration Space
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[0,0],  [0,1], [0,2], …, [0,6],  [0,7],

[1,1], [1,2], …, [1,6],  [1,7],
[2,2], …, [2,6],  [2,7],

………
[6,6],  [6,7],

0 1 2 3 4 5  6  7   J
0

1

2

3

4

5

6

I 



Iteration Space
• N deep loops  N-dimensional discrete iteration space

– Normalized loops: assume step size = 1

FOR I = 0 to 6

FOR J = I to 7

• Iterations are represented as coordinates in iteration space

• Sequential execution order of iterations  Lexicographic order

• Iteration i̅  is lexicograpically less than j̅ , i̅ < j̅  iff
there exists c s.t. i1 = j1, i2 = j2,… ic-1 = jc-1 and ic < jc
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Iteration Space
• N deep loops  N-dimensional discrete iteration space

– Normalized loops: assume step size = 1

FOR I = 0 to 6

FOR J = I to 7

• An affine loop nest
– Loop bounds are integer linear functions of constants, loop constant 

variables and outer loop indexes

– Array accesses are integer linear functions of constants, loop constant 
variables and loop indexes

0 1 2 3 4 5  6  7   J
0

1

2

3

4

5

6

I 



Iteration Space
• N deep loops  N-dimensional discrete iteration space

– Normalized loops: assume step size = 1

FOR I = 0 to 6

FOR J = I to 7

• Affine loop nest  Iteration space as a set of linear inequalities 
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Data Space

• M dimensional arrays  M-dimensional discrete cartesian space 

– a hypercube

Integer A(10)

Float B(5, 6)
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Dependences 

• True dependence
a  =

=  a

• Anti dependence
=  a

a  =  

• Output dependence
a  =

a  =

• Definition: 
Data dependence exists for a dynamic instance i and j iff
– either i or j is a write operation
– i and j refer to the same variable
– i executes before j

• How about array accesses within loops?
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Array Accesses in a loop
FOR I = 0 to 5

A[I] = A[I] + 1
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Iteration Space Data Space
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Array Accesses in a loop
FOR I = 0 to 5

A[I+1] = A[I] + 1
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Array Accesses in a loop
FOR I = 0 to 5

A[I] = A[I+2] + 1

0 1 2 3 4 5 6 7 8 9 10 1112  0 1 2 3 4 5  
Iteration Space Data Space

= A[I+2]

A[I]

= A[I+2]

A[I]

= A[I+2]

A[I]

= A[I+2]

A[I]

= A[I+2]

A[I]

= A[I+2]

A[I]



Array Accesses in a loop
FOR I = 0 to 5

A[2*I] = A[2*I+1] + 1
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Distance Vectors

• A loop has a distance d if there exist a data 
dependence from iteration i to j and d = j-i

FOR I = 0 to 5

A[I] = A[0] + 1

FOR I = 0 to 5

A[I+1] = A[I] + 1

FOR I = 0 to 5

A[I] = A[I+2] + 1

FOR I = 0 to 5

A[I] = A[I] + 1
 0dv

 1dv

 2dv

     *2,1  dv



Multi-Dimensional Dependence

FOR I = 1 to n

FOR J = 1 to n

A[I, J] = A[I, J-1] + 1
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• Dependence Analysis

• Increasing Parallelization Opportunities



What is the Dependence?

FOR I = 1 to n

FOR J = 1 to n

A[I, J] = A[I-1, J+1] + 1
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What is the Dependence?

FOR I = 1 to n

FOR J = 1 to n

A[I, J] = A[I-1, J+1] + 1

FOR I = 1 to n

FOR J = 1 to n

B[I] = B[I-1] + 1

J

I

J

I



What is the Dependence?

FOR I = 1 to n

FOR J = 1 to n
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FOR i = 1 to N-1

FOR j = 1 to N-1

A[i,j] = A[i,j-1] + A[i-1,j];

What is the Dependence?
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Recognizing FORALL Loops

• Find data dependences in loop
– For every pair of array acceses to the same array

If the first access has at least one dynamic instance (an iteration) 
in which it refers to a location in the array that the second access 
also refers to in at least one of the later dynamic instances 
(iterations).

Then there is a data dependence between the statements

– (Note that same array can refer to itself – output dependences)

• Definition
– Loop-carried dependence: 

dependence that crosses a loop boundary

• If there are no loop carried dependences  parallelizable



Data Dependence Analysis

• I: Distance Vector method

• II: Integer Programming



Distance Vector Method

• The ith loop is parallelizable for all 
dependence d = [d1,…,di,..dn]
either

one of d1,…,di-1 is > 0 
or

all d1,…,di = 0 



Is the Loop Parallelizable?

FOR I = 0 to 5

A[I] = A[0] + 1

FOR I = 0 to 5

A[I+1] = A[I] + 1

FOR I = 0 to 5

A[I] = A[I+2] + 1

FOR I = 0 to 5

A[I] = A[I] + 1
 0dv

 1dv

 2dv

 *dv
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Are the Loops Parallelizable?
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Are the Loops Parallelizable?
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Integer Programming Method

• Example
FOR I = 0 to 5

A[I+1] = A[I] + 1

• Is there a loop-carried dependence between A[I+1] and A[I]
– Are there two distinct iterations iw and ir such that A[iw+1] is the 

same location as A[ir]

–  integers iw, ir 0 ≤ iw, ir ≤ 5     iw  ir iw+ 1 =  ir

• Is there a dependence between A[I+1] and A[I+1]
– Are there two distinct iterations i1 and i2 such that A[i1+1] is the 

same location as A[i2+1]

–  integers i1, i2 0 ≤ i1, i2 ≤ 5     i1  i2 i1+ 1 = i2 +1 



Integer Programming Method

• Formulation

–  an integer vector i̅   such that Â i̅  ≤ b̅  where
Â is an integer matrix and b̅  is an integer vector

FOR I = 0 to 5

A[I+1] = A[I] + 1



Iteration Space

• N deep loops  n-dimensional 

discrete cartesian space

• Affine loop nest  Iteration 

space as a set of linear 
inequalities 
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FOR I = 0 to 5

A[I+1] = A[I] + 1



Integer Programming Method

• Formulation

–  an integer vector i̅   such that Â i̅  ≤ b̅  where
Â is an integer matrix and b̅  is an integer vector

• Our problem formulation for A[i] and A[i+1]

–  integers iw, ir 0 ≤ iw, ir ≤ 5  iw  ir iw+ 1 =  ir
– iw  ir is not an affine function 

• divide into 2 problems

• Problem 1 with iw < ir  and problem 2 with ir < iw 

• If either problem has a solution  there exists a dependence

– How about iw+ 1 =  ir
• Add two inequalities to single problem

iw+ 1 ≤ ir, and ir ≤ iw+ 1

FOR I = 0 to 5

A[I+1] = A[I] + 1



Integer Programming Formulation

• Problem 1
0 ≤ iw
iw ≤ 5

0 ≤ ir
ir ≤ 5

iw < ir  
iw+ 1 ≤ ir
ir ≤ iw+ 1

FOR I = 0 to 5

A[I+1] = A[I] + 1



Integer Programming Formulation

• Problem 1
0 ≤ iw  -iw ≤ 0

iw ≤ 5  iw ≤ 5

0 ≤ ir  -ir ≤ 0

ir ≤ 5  ir ≤ 5

iw < ir   iw - ir ≤ -1

iw+ 1 ≤ ir  iw - ir ≤ -1

ir ≤ iw+ 1  -iw + ir ≤ 1

FOR I = 0 to 5

A[I+1] = A[I] + 1



Integer Programming Formulation

• Problem 1
0 ≤ iw  -iw ≤ 0 -1 0 0

iw ≤ 5  iw ≤ 5 1 0 5

0 ≤ ir  -ir ≤ 0 0 -1 0

ir ≤ 5  ir ≤ 5 0 1 5

iw < ir   iw - ir ≤ -1 1 -1 -1

iw+ 1 ≤ ir  iw - ir ≤ -1 1 -1 -1

ir ≤ iw+ 1  -iw + ir ≤ 1 -1 1 1

• and problem 2 with ir < iw 

Â b̅



Generalization
• An affine loop nest

FOR i1 = fl1(c1…ck) to Iu1(c1…ck)

FOR i2 = fl2(i1,c1…ck) to Iu2(i1,c1…ck)

……

FOR in = fln(i1…in-1,c1…ck) to Iun(i1…in-1,c1…ck)

A[fa1(i1…in,c1…ck), fa2(i1…in,c1…ck),…,fam(i1…in,c1…ck)]

• Solve 2*n problems of the form
• i1 = j1, i2 = j2,…… in-1 = jn-1, in < jn

• i1 = j1, i2 = j2,…… in-1 = jn-1, jn < in

• i1 = j1, i2 = j2,…… in-1 < jn-1

• i1 = j1, i2 = j2,…… jn-1 < in-1
…………………

• i1 = j1, i2 < j2

• i1 = j1, j2 < i2

• i1 < j1

• j1 < i1
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Increasing Parallelization 
Opportunities

• Scalar Privatization

• Reduction Recognition

• Induction Variable Identification

• Array Privatization

• Loop Transformations

• Granularity of Parallelism

• Interprocedural Parallelization



Scalar Privatization

• Example
FOR i = 1 to n

X = A[i] * 3;

B[i] = X;

• Is there a loop carried dependence?

• What is the type of dependence?



Privatization 

• Analysis:
– Any anti- and output- loop-carried dependences 

• Eliminate by assigning in local context
FOR i = 1 to n

integer Xtmp;

Xtmp = A[i] * 3;

B[i] = Xtmp;

• Eliminate by expanding into an array
FOR i = 1 to n

Xtmp[i] = A[i] * 3;

B[i] = Xtmp[i];



Privatization 

• Need a final assignment to maintain the correct 
value after the loop nest

• Eliminate by assigning in local context
FOR i = 1 to n

integer Xtmp;

Xtmp = A[i] * 3;

B[i] = Xtmp;

if(i == n) X = Xtmp

• Eliminate by expanding into an array
FOR i = 1 to n

Xtmp[i] = A[i] * 3;

B[i] = Xtmp[i];

X = Xtmp[n];



Another Example

• How about loop-carried true 
dependences?

• Example
FOR i = 1 to n

X = X + A[i];

• Is this loop parallelizable? 



Reduction Recognition

• Reduction Analysis:
– Only associative operations

– The result is never used within the loop

• Transformation
Integer Xtmp[NUMPROC];

Barrier();

FOR i = myPid*Iters to MIN((myPid+1)*Iters, n)

Xtmp[myPid] = Xtmp[myPid] + A[i];

Barrier();

If(myPid == 0) {

FOR p = 0 to NUMPROC-1

X = X + Xtmp[p];

…



Induction Variables

• Example
FOR i = 0 to N

A[i] = 2^i;

• After strength reduction
t = 1

FOR i = 0 to N

A[i] = t;

t = t*2;

• What happened to loop carried dependences?

• Need to do opposite of this!

– Perform induction variable analysis

– Rewrite IVs as a function of the loop variable



Array Privatization

• Similar to scalar privatization

• However, analysis is more complex

– Array Data Dependence Analysis:
Checks if two iterations access the same location

– Array Data Flow Analysis:
Checks if two iterations access the same value

• Transformations

– Similar to scalar privatization 

– Private copy for each processor or expand with an 
additional dimension 



• A loop may not be parallel as is

• Example
FOR i = 1 to N-1

FOR j = 1 to N-1

A[i,j] = A[i,j-1] + A[i-1,j];

Loop Transformations
J

I



• A loop may not be parallel as is

• Example
FOR i = 1 to N-1

FOR j = 1 to N-1

A[i,j] = A[i,j-1] + A[i-1,j];

• After loop Skewing
FOR i = 1 to 2*N-3

FORPAR j = max(1,i-N+2) to min(i, N-1)

A[i-j+1,j] = A[i-j+1,j-1] + A[i-j,j];

Loop Transformations
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Granularity of Parallelism

• Example
FOR i = 1 to N-1

FOR j = 1 to N-1

A[i,j] = A[i,j] + A[i-1,j];

• Gets transformed into
FOR i = 1 to N-1

Barrier();

FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)

A[i,j] = A[i,j] + A[i-1,j]; 

Barrier();

• Inner loop parallelism can be expensive
– Startup and teardown overhead of parallel regions 

– Lot of synchronization

– Can even lead to slowdowns

J

I



Granularity of Parallelism

• Inner loop parallelism can be expensive

• Solutions

– Don’t parallelize if the amount of work within 
the loop is too small

or

– Transform into outer-loop parallelism



Outer Loop Parallelism

• Example
FOR i = 1 to N-1

FOR j = 1 to N-1

A[i,j] = A[i,j] + A[i-1,j];

• After Loop Transpose
FOR j = 1 to N-1

FOR i = 1 to N-1

A[i,j] = A[i,j] + A[i-1,j];

• Get mapped into
Barrier();

FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)

FOR i = 1 to N-1

A[i,j] = A[i,j] + A[i-1,j];

Barrier();

J

I

I

J



Unimodular Transformations

• Interchange, reverse and skew

• Use a matrix transformation
Inew = A Iold

• Interchange

• Reverse

• Skew
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Legality of Transformations

• Unimodular transformation with matrix A is valid iff.
For all dependence vectors v

the first non-zero in Av is positive
• Example

FOR i = 1 to N-1

FOR j = 1 to N-1

A[i,j] = A[i,j] + A[i-1,j];

• Interchange

• Reverse

• Skew
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Interprocedural Parallelization

• Function calls will make a loop unparallelizatble

– Reduction of available parallelism

– A lot of inner-loop parallelism

• Solutions

– Interprocedural Analysis

– Inlining



Interprocedural Parallelization

• Issues
– Same function reused many times
– Analyze a function on each trace  Possibly exponential
– Analyze a function once  unrealizable path problem

• Interprocedural Analysis
– Need to update all the analysis
– Complex analysis
– Can be expensive

• Inlining
– Works with existing analysis
– Large code bloat  can be very expensive 



HashSet h;

for i = 1 to n

int v = compute(i);

h.insert(i);

Are iterations independent?

Can you still execute the loop in parallel?

Do all parallel executions give same result?



Summary

• Multicores are here

– Need parallelism to keep the performance gains

– Programmer defined or compiler extracted parallelism

• Automatic parallelization of loops with arrays

– Requires Data Dependence Analysis

– Iteration space & data space abstraction

– An integer programming problem

• Many optimizations that’ll increase parallelism


