
Memory Optimization

Outline

• Issues with the Memory System

• Loop Transformations

• Data Transformations

• Prefetching

• Alias Analysis

Memory Hierarchy

1 - 2 ns

3 - 10 ns

8 - 30 ns

60 - 250 ns

5 - 20 ms

32 – 512 B

16 – 128 KB

1 – 16 MB

1 GB – 128 GB

250 GB – 4 TB

Registers

L1 Private Cache

L2/L3
Shared Cache

Main Memory
(DRAM)

Permanent Storage
(Hard Disk)

Processor-Memory Gap

Year

µProc

60%/year

(2/1.5yr)

DRAM

9%/year

(2/10 yrs)
1

10

100

1000

1
9

8
0

1
9

8
1

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

1
9

8
2

P
e
rf

o
rm

a
n

c
e

Cache Architecture

Pentium D Core Duo Core 2 Duo Athlon 64

L1 code
(per core)

size 12 K uops 32 KB 32 KB 64 KB

associativity 8 way 8 way 8 way 2 way

Line size 64 bytes 64 bytes 64 bytes 64 bytes

L1 data
(per core)

size 16 KB 32 KB 32 KB 64 KB

associativity 8 way 8 way 8 way 8 way

Line size 64 bytes 64 bytes 64 bytes 64 bytes

L1 to L2 Latency 4 cycles 3 cycles 3 cycles 3 cycles

L2 shared

size 4 MB 4 MB 4 MB 1 MB

associativity 8 way 8 way 16 way 16 way

Line size 64 bytes 64 bytes 64 bytes 64 bytes

L2 to L3(off) Latency 31 cycles 14 cycles 14 cycles 20 cycles

Cache Misses
• Cold misses

– First time a data is accessed

• Capacity misses

– Data got evicted between accesses because a lot of other data
(more than the cache size) was accessed

• Conflict misses

– Data got evicted because a subsequent access fell on the same
cache line (due to associativity)

• True sharing misses (multicores)

– Another processor accessed the data between the accesses

• False sharing misses (multicores)

– Another processor accessed different data in the same cache line
between the accesses

Data Reuse

• Temporal Reuse

– A given reference accesses the
same location in multiple
iterations

• Spatial Reuse

– Accesses to different locations
within the same cache line

• Group Reuse

– Multiple references access the
same location

for i = 0 to N
for j = 0 to N

A[j] =

for i = 0 to N
for j = 0 to N

B[i, j] =

for i = 0 to N
A[i] = A[i-1] + 1

Outline

• Issues with the Memory System

• Loop Transformations

• Data Transformations

• Prefetching

• Alias Analysis

Matrix Multiply

for i = 1 to n

for j = 1 to n

for k = 1 to n

c[i,j] += a[i,k]*b[k,j]

Example: Matrix Multiply

x =

1024

1

1

1
0
2
4

1

1
x =

1024

1

1024

1
0
2
4

1024

1
1,050,624

Data Accessed

Matrix Multiply

for i0 = 1 to n step b

for j0 = 1 to n step b

for k0 = 1 to n step b

for 1 = i0 to min(i0+b-1, n)

for j = j0 to min(j0+b-1, n)

for k = k0 to min(k0+b-1, n)

c[i,j] += a[i,k]*b[k,j]

Example: Matrix Multiply

x =

1024

1

1

1
0
2
4

1

1

x =

1024

3
2

32

1
0
2
4

3
2

32

66,560

x =

1024

1

1024

1
0
2
4

1024

1
1,050,624

Data Accessed

Loop Transformations

• Transform the iteration space to reduce the
number of misses

• Reuse distance – For a given access, number of
other data items accessed before that data is
accessed again

• Reuse distance > cache size

– Data is spilled between accesses

Divide and Conquer Matrix
Multiply

A B

C D

E F

G H

AE+BG AF+BH

CE+DG CF+DH
× =

Loop Transformations

for i = 0 to N

for j = 0 to N

for k = 0 to N

A[k,j]

Reuse distance = N2

If Cache size < 16 doubles?

A lot of capacity misses

Loop Transformations

for i = 0 to N

for j = 0 to N

for k = 0 to N

A[k,j]

Loop Interchange

for j = 0 to N

for i = 0 to N

for k = 0 to N

A[k,j]

Loop Transformations

for j = 0 to N

for i = 0 to N

for k = 0 to N

A[k,j]

Cache line size > data size

Cache line size = L

Reuse distance = LN

If cache size < 8 doubles?

Again a lot of capacity misses

Loop Transformations

for j = 0 to N

for i = 0 to N

for k = 0 to N

A[k,j]

Loop Interchange

for k = 0 to N

for i = 0 to N

for j = 0 to N

A[k,j]

Loop Transformations

for i = 0 to N

for j = 0 to N

for k = 0 to N

A[i,j]= A[i,j]+ B[i,k]+ C[k,j]

• No matter what loop transformation you do one array
access has to traverse the full array multiple times

Loop Tiling

for i = 0 to N

for j = 0 to N

for ii = 0 to ceil(N/b)

for jj = 0 to ceil(N/b)

for i = b*ii to min(b*ii+b-1, N)

for j = b*jj to min(b*jj+b-1, N)

Outline

• Issues with the Memory System

• Loop Transformations

• Data Transformations

• Prefetching

• Alias Analysis

False Sharing Misses

Cache Lines

Array X

for J =

forall I =

X(I, J) = …

Conflict Misses

Array X Cache Memory

for J =

forall I =

X(I, J) = …

Data Transformations

• Similar to loop transformations

• All the accesses have to be updated

– Whole program analysis is required

Strip-Mining
Create two dims from one

S
to

ra
g

e

D
e

c
la

ra
ti

o
n

A
rr

a
y

A
c
c
e

s
s

M
e

m
o

ry

L
a

y
o

u
t

N

4

i

With blocksize=4

Strip-Minding
Create two dims from one

Permutation
Change memory layout

S
to

ra
g

e

D
e

c
la

ra
ti

o
n

A
rr

a
y

A
c
c
e

s
s

M
e

m
o

ry

L
a

y
o

u
t

N

4

i

With blocksize=4

N1

N2

N2

N1

i1

i2

i2

i1

With permutation matrix 0 1
1 0

Data Transformation Algorithm

• Rearrange data: Each processor’s data is contiguous

• Use data decomposition

– *, block, cyclic, block-cyclic

• Transform each dimension according to the decomposition

• Use a combination of strip-mining and permutation primitives

Example I: (Block, Block)

i1

i2

i1

i2

Example I: (Block, Block)

i1 mod

i1 /

i2

i1

i2

i1

i2

1

Strip-Mine

Example I: (Block, Block)

i1 mod

i1 /

i2

i1

i2

i1 mod

i1 /

i2

i1

i2

1 1

Strip-Mine Permute

Example I: (Cyclic, *)

i1

i2

i1

i2

Example I: (Cyclic, *)

i1 mod P

i1 / P

i2

i1

i2

i1

i2

1

3

Strip-Mine

Example I: (Cyclic, *)

i1 mod P

i1 / P

i2

i1

i2

i1 mod P

i1 / P

i2

i1

i2

1 1

3

Strip-Mine Permute

3

Performance
LU Decomposition

(256x256)
5 point stencil

(512x512)

LU Decomposition
(1Kx1K)

Parallelizing outer loop

Best computation placement

+ data transformations

1 2 4 4 6 8 10 12 16 18 20 22 24 26 28 30 32

1 2 4 4 6 8 10 12 16 18 20 22 24 26 28 30 32

1 2 4 4 6 8 10 12 16 18 20 22 24 26 28 30 32

Optimizations

• Modulo and division operations in the index calculation

– Very high overhead

• Use standard techniques

– Loop invariant removal, CSE

– Strength reduction exploiting properties of modulo and division

– Use knowledge about the program

Outline

• Issues with the Memory System

• Loop Transformations

• Data Transformations

• Prefetching

• Alias Analysis

Prefetching
• Cache miss stalls the processor for hundreds of cycles

– Start fetching the data early so it’ll be available when needed

• Pros

– Reduction of cache misses  increased performance

• Cons

– Prefetch contents for fetch bandwidth
• Solution: Hardware only issue prefetches on unused bandwidth

– Evicts a data item that may be used
• Solution: Don’t prefetch too early

– Pretech is still pending when the memory is accessed
• Solution: Don’t prefetch too late

– Prefetch data is never used
• Solution: Prefetch only data guaranteed to be used

– Too many prefetch instructions
• Prefetch only if access is going to miss in the cache

Prefetching

• Compiler inserted

– Use reuse analysis to identify misses

– Partition the program and insert prefetches

• Run ahead thread (helper threads)

– Create a separate thread that runs ahead of the main
thread

– Runahead only does computation needed for control-
flow and address calculations

– Runahead performs data (pre)fetches

Outline

• Issues with the Memory System

• Loop Transformations

• Data Transformations

• Prefetching

• Alias Analysis

Alias Analysis

• Aliases destroy local reasoning

– Simple, local transformations require global reasoning in the
presence of aliases

– A critical issue in pointer-heavy code

– This problem is even worse for multithreaded programs

• Two solutions

– Alias analysis

• Tools to tell us the potential aliases

– Change the programming language

• Languages have no facilities for talking about aliases

• Want to make local reasoning possible

From Prof. Aiken @ Stanford CS 294-1 Lecture 15

Aliases

• Definition

Two pointers that point to the same location
are aliases

• Example

Y = &Z

X = Y

X = 3 / changes the value of *Y */

From Prof. Aiken @ Stanford CS 294-1 Lecture 15

Example

foo(int * A, int * B, int * C, int N)

for i = 0 to N-1

A[i]= A[i]+ B[i] + C[i]

• Is this loop parallel?

• Depends

int X[1000];

int Y[1000];

int Z[1000]

foo(X, Y, Z, 1000);

int X[1000];

foo(&X[1], &X[0], &X[2], 998);

Points-To Analysis

• Consider:

P = &Q

Y = &Z

X = Y

*X = P

• Informally:
– P can point to Q

– Y can point to Z

– X can point to Z

– Z can point to Q Q

P

X Y

Z

From Prof. Aiken @ Stanford CS 294-1 Lecture 15

Points-To Relations

• A graph

– Nodes are program names

– Edge (x,y) says x may point to y

• Finite set of names

– Implies each name represents many heap cells

– Correctness: If *x = y in any state of any execution,
then (x,y) is an edge in the points-to graph

From Prof. Aiken @ Stanford CS 294-1 Lecture 15

Sensitivity

• Context sensitivity
– Separate different uses of functions

– Different is the key – if the analysis think the input is
the same, reuse the old results

• Flow sensitivity
• For insensitivity makes any permutation of program

statements gives same result

• Flow sensitive is similar to data-flow analysis

Conclusion

• Memory systems are designed to give a huge
performance boost for “normal” operations

• The performance gap between good and bad
memory usage is huge

• Programs analyses and transformations are
needed

• Can off-load this task to the compiler

