MIT 6.035
Top-Down Parsing

Martin Rinard
Laboratory for Computer Science
Massachusetts Institute of Technology
Orientation

- Language specification
 - Lexical structure – regular expressions
 - Syntactic structure – grammar
- This Lecture - recursive descent parsers
 - Code parser as set of mutually recursive procedures
 - Structure of program matches structure of grammar
Starting Point

• Assume lexical analysis has produced a sequence of tokens
 • Each token has a type and value
 • Types correspond to terminals
 • Values to contents of token read in
• Examples
 • Int 549 – integer token with value 549 read in
 • if - if keyword, no need for a value
 • AddOp + - add operator, value +
Basic Approach

- Start with Start symbol
- Build a leftmost derivation
 - If leftmost symbol is nonterminal, choose a production and apply it
 - If leftmost symbol is terminal, match against input
- If all terminals match, have found a parse!
- Key: find correct productions for nonterminals
Graphical Illustration of Leftmost Derivation

Sentential Form

$NT_1 \ T_1 \ T_2 \ T_3 \ NT_2 \ NT_3$

Apply Production Here

Not Here
Grammar for Parsing Example

\[\text{Start} \rightarrow \text{Expr} \]
\[\text{Expr} \rightarrow \text{Expr} + \text{Term} \]
\[\text{Expr} \rightarrow \text{Expr} - \text{Term} \]
\[\text{Expr} \rightarrow \text{Term} \]
\[\text{Term} \rightarrow \text{Term} \ast \text{Int} \]
\[\text{Term} \rightarrow \text{Term} / \text{Int} \]
\[\text{Term} \rightarrow \text{Int} \]

- Set of tokens is \(\{ +, -, *, /, \text{Int} \} \), where \(\text{Int} = [0-9][0-9]^* \)
- For convenience, may represent each \(\text{Int} \ n \) token by \(n \)
Parsing Example

Current Position in Parse Tree

Start

Remaining Input

2-2*2

Sentential Form

Start
Parsing Example

Remaining Input
2-2*2

Sentential Form
Expr

Applied Production
Start → Expr
Parsing Example

Parse Tree

```
Start
  \downarrow
Expr
  \downarrow
- \quad Term
```

Remaining Input

```
2-2*2
```

Sentential Form

```
Expr - Term
```

Applied Production

```
Expr → Expr + Term
Expr → Expr - Term
Expr → Term
```
Parsing Example

Parse Tree

Start

Expr

- Term

Term

Expr → Expr + Term
Expr → Expr - Term
Expr → Term

Remaining Input

2 - 2 * 2

Sentential Form

Term - Term

Applied Production

Expr → Term
Parsing Example

Remaining Input

2 - 2*2

Sentential Form

Int - Term

Applied Production

Term → Int
Parsing Example

Parse Tree

Start
 ↓
Expr
 ↓
Expr - Term
 ↓
Term
 ↓
Int 2

Remaining Input
2 - 2*2

Match Input Token!

Sentential Form
2 - Term
Parsing Example

Parse Tree

\[
\text{Start} \quad \Downarrow \\
\text{Expr} \\
\downarrow \\
\text{Expr} \\
\downarrow \\
\text{Term} \\
\downarrow \\
\text{Int 2}
\]

Remaining Input

\[-2 \times 2\]

Sentential Form

\[2 - \text{Term}\]

Match Input Token!

Expr
Parsing Example

Remaining Input
2*2

Sentential Form
2 - Term

Parse Tree

Start

Expr

Expr

Term

Term

Int 2
Parsing Example

Parse Tree

Remaining Input
2*2

Sentential Form
2 - Term*Int

Applied Production
Term → Term * Int
Parsing Example

Parse Tree

Start
 ↓
Expr
 ↓
Expr
 ↓
Term
 ↓
Term
 ↓
Int 2
 ↓
Int

Applied Production

Term → Int

Remaining Input

2*2

Sentential Form

2 - Int * Int
Parsing Example

Parse Tree

- **Start**
 - **Expr**
 - **Expr**
 - **Term**
 - **Term**
 - **Term**
 - **Term**
 - **Term**
 - **Int 2**
 - **Int 2**
 - **Term**
 - **Expr**
 - **Term**
 - **Term**
 - **Term**
 - **Int**

Match Input Token!

Remaining Input

- 2*2

Sentential Form

- 2 - 2 * Int
Parsing Example

Parse Tree

```
Start
  ↓
Expr
  ↓
  Expr
  ↓
Term
  ↓
  Term
  ↓
Int 2
```

Match Input Token!

Remaining Input

```
*2
```

Sentential Form

```
2 - 2 * Int
```
Parsing Example

Parse Tree

Start
- Expr
- Term

- Expr
- Term
- Term
- Int 2

Match Input Token!

Remaining Input

2

Sentential Form

2 - 2 * Int
Parsing Example

Parse Tree

Start

Expr

Expr

Term

Term

Term

Int 2

Int 2

Int 2

Remaining Input

Parse Complete!

Sentential Form

2 - 2 * 2
Summary

- Three Actions (Mechanisms)
 - Apply production to expand current nonterminal in parse tree
 - Match current terminal (consuming input)
 - Accept the parse as correct
- Parser generates preorder traversal of parse tree
 - visit parents before children
 - visit siblings from left to right
Policy Problem

- Which production to use for each nonterminal?
- Classical Separation of Policy and Mechanism
- One Approach: Backtracking
 - Treat it as a search problem
 - At each choice point, try next alternative
 - If it is clear that current try fails, go back to previous choice and try something different
- General technique for searching
- Used a lot in classical AI and natural language processing (parsing, speech recognition)
Backtracking Example

Parse Tree

Remaining Input
2-2*2

Sentential Form
Start
Backtracking Example

Parse Tree

\[\text{Start} \downarrow \text{Expr} \]

Remaining Input

\[2 - 2 \times 2 \]

Sentential Form

\[\text{Expr} \]

Applied Production

\[\text{Start} \rightarrow \text{Expr} \]
Backtracking Example

Parse Tree

Start

Expr

Expr + Term

Remaining Input

2-2*2

Sentential Form

Expr + Term

Applied Production

Expr → Expr + Term
Backtracking Example

Parse Tree

\[
\text{Start} \
\downarrow \\
\text{Expr} \
\downarrow \\
\text{Expr} + \text{Term} \\
\downarrow \\
\text{Term}
\]

Remaining Input

\[2-2*2\]

Sentential Form

\[\text{Term} + \text{Term}\]

Applied Production

\[\text{Expr} \rightarrow \text{Term}\]
Backtracking Example

Parse Tree

Start

Expr

Expr + Term

Term

Int

Match Input Token!

Remaining Input

2 - 2 * 2

Sentential Form

Int + Term

Applied Production

Term → Int
Backtracking Example

Parse Tree

\[
\begin{align*}
\text{Start} & \downarrow \\
\text{Expr} & \downarrow \\
\text{Expr} & \downarrow \\
\text{Term} & \downarrow \\
\text{Int 2} &
\end{align*}
\]

Remaining Input

\[-2*2\]

Sentential Form

\[2 - \text{Term}\]

Applied Production

\[\text{Term} \rightarrow \text{Int}\]
Backtracking Example

Parse Tree

\[
\text{Start} \downarrow \text{Expr}
\]

Remaining Input

\[2-2*2\]

Sentential Form

\[Expr\]

Applied Production

\[Start \rightarrow Expr\]
Backtracking Example

Parse Tree

```
Parse Tree
Start
Expr
Expr - Term
```

Remaining Input

```
2-2*2
```

Sentential Form

```
Expr - Term
```

Applied Production

```
Expr \rightarrow Expr - Term
```

```
Expr
```

Backtracking Example

Parse Tree

Start

Expr

- Term

Expr

- Term

Term

Remaining Input

2-2*2

Sentential Form

Term - Term

Applied Production

Expr → Term
Backtracking Example

Parse Tree

```
Start
  ↓
Expr
  ↓
Expr - Term
  ↓
Term
  ↓
Int
```

Remaining Input

```
2-2*2
```

Sentential Form

```
Int - Term
```

Applied Production

```
Term → Int
```
Backtracking Example

Parse Tree

Start

Expr

- Term

Expr

Term

Int 2

Match Input Token!

Remaining Input

-2*2

Sentential Form

2 - Term
Backtracking Example

Parse Tree

Start

Expr

Expr

Term

Term

Int 2

Match Input Token!

Remaining Input

2*2

Sentential Form

2 - Term
Left Recursion + Top-Down Parsing = Infinite Loop

- Example Production: $Term \rightarrow Term^* Num$
- Potential parsing steps:
General Search Issues

- Three components
 - Search space (parse trees)
 - Search algorithm (parsing algorithm)
 - Goal to find (parse tree for input program)
- Would like to (but can’t always) ensure that
 - Find goal (hopefully quickly) if it exists
 - Search terminates if it does not
- Handled in various ways in various contexts
 - Finite search space makes it easy
 - Exploration strategies for infinite search space
 - Sometimes one goal more important (model checking)
- For parsing, hack grammar to remove left recursion
Eliminating Left Recursion

- Start with productions of form
 - \(A \rightarrow A \alpha \)
 - \(A \rightarrow \beta \)
 - \(\alpha, \beta \) sequences of terminals and nonterminals that do not start with \(A \)
- Repeated application of \(A \rightarrow A \alpha \)

builds parse tree like this:
Eliminating Left Recursion

• Replacement productions
 - \(A \rightarrow A \alpha \quad A \rightarrow \beta \ R \quad \text{R is a new nonterminal} \)
 - \(A \rightarrow \beta \quad R \rightarrow \alpha \ R \)
 - \(R \rightarrow \varepsilon \quad \text{New Parse Tree} \)

Old Parse Tree

```
       A
      / \  \
     A   \α
    / \   /
   β   α
```

New Parse Tree

```
       A
      /   \
     R   \α
    /   /  /
  β   R   ε
```

```
Hacked Grammar

Original Grammar Fragment

\[ Term \rightarrow Term \ast Int \]
\[ Term \rightarrow Term / Int \]
\[ Term \rightarrow Int \]

New Grammar Fragment

\[ Term \rightarrow Int \ Term' \]
\[ Term' \rightarrow \ast Int \ Term' \]
\[ Term' \rightarrow / Int \ Term' \]
\[ Term' \rightarrow \varepsilon \]
Parse Tree Comparisons

Original Grammar

New Grammar
Eliminating Left Recursion

- Changes search space exploration algorithm
  - Eliminates direct infinite recursion
  - But grammar less intuitive
- Sets things up for predictive parsing
Predictive Parsing

- Alternative to backtracking
- Useful for programming languages, which can be designed to make parsing easier

Basic idea

- Look ahead in input stream
- Decide which production to apply based on next tokens in input stream
- We will use one token of lookahead
Predictive Parsing Example Grammar

\[ \text{Start} \rightarrow \text{Expr} \]
\[ \text{Expr} \rightarrow \text{Term} \text{ Expr}' \]
\[ \text{Expr}' \rightarrow + \text{ Term} \text{ Expr}' \]
\[ \text{Expr}' \rightarrow - \text{ Term} \text{ Expr}' \]
\[ \text{Expr}' \rightarrow \varepsilon \]

\[ \text{Term} \rightarrow \text{Int} \text{ Term}' \]
\[ \text{Term}' \rightarrow * \text{ Int} \text{ Term}' \]
\[ \text{Term}' \rightarrow / \text{ Int} \text{ Term}' \]
\[ \text{Term}' \rightarrow \varepsilon \]
Choice Points

- Assume $Term'$ is current position in parse tree
- Have three possible productions to apply
  
  \[
  Term' \rightarrow * \text{Int } Term' \\
  Term' \rightarrow / \text{Int } Term' \\
  Term' \rightarrow \varepsilon
  \]

- Use next token to decide
  
  - If next token is $\ast$, apply $Term' \rightarrow * \text{Int } Term'$
  - If next token is $/$, apply $Term' \rightarrow / \text{Int } Term'$
  - Otherwise, apply $Term' \rightarrow \varepsilon$
Predictive Parsing + Hand Coding = Recursive Descent Parser

- One procedure per nonterminal $NT$
  - Productions $NT \rightarrow \beta_1$, ..., $NT \rightarrow \beta_n$
  - Procedure examines the current input symbol $T$ to determine which production to apply
    - If $T \in \text{First}(\beta_k)$
    - Apply production $k$
    - Consume terminals in $\beta_k$ (check for correct terminal)
    - Recursively call procedures for nonterminals in $\beta_k$
  - Current input symbol stored in global variable token
- Procedures return
  - true if parse succeeds
  - false if parse fails
Example

Boolean Term()
    if (token = Int n) token = NextToken(); return(TermPrime())
    else return(false)

Boolean TermPrime()
    if (token = *)
        token = NextToken();
        if (token = Int n) token = NextToken(); return(TermPrime())
        else return(false)
    else if (token = /)
        token = NextToken();
        if (token = Int n) token = NextToken(); return(TermPrime())
        else return(false)
    else return(true)

Term → Int Term’
Term’ → *Int Term’
Term’ → /Int Term’
Term’ → ε
Multiple Productions With Same Prefix in RHS

• Example Grammar
  \[ NT \rightarrow \text{if then} \]
  \[ NT \rightarrow \text{if then else} \]

• Assume \( NT \) is current position in parse tree, and if is the next token

• Unclear which production to apply
  • Multiple \( k \) such that \( T \in \text{First}(\beta_k) \)
  • if \( \in \) First(if then)
  • if \( \in \) First(if then else)
Solution: Left Factor the Grammar

- New Grammar Factors Common Prefix Into Single Production
  \[ NT \rightarrow \text{if then } NT' \]
  \[ NT' \rightarrow \text{else} \]
  \[ NT' \rightarrow \varepsilon \]
- No choice when next token is if!
- All choices have been unified in one production.
Nonterminals

• What about productions with nonterminals?

$$NT \rightarrow NT_1 \alpha_1$$

$$NT \rightarrow NT_2 \alpha_2$$

• Must choose based on possible first terminals that $NT_1$ and $NT_2$ can generate

• What if $NT_1$ or $NT_2$ can generate $\varepsilon$?
  
  • Must choose based on $\alpha_1$ and $\alpha_2$
\( NT \) derives \( \varepsilon \)

- Two rules
  - \( NT \rightarrow \varepsilon \) implies \( NT \) derives \( \varepsilon \)
  - \( NT \rightarrow NT_1 \ldots NT_n \) and for all \( 1 \leq i \leq n \) \( NT_i \) derives \( \varepsilon \) implies \( NT \) derives \( \varepsilon \)
Fixed Point Algorithm for Derives $\varepsilon$

for all nonterminals $NT$
set $NT$ derives $\varepsilon$ to be false
for all productions of the form $NT \rightarrow \varepsilon$
set $NT$ derives $\varepsilon$ to be true
while (some $NT$ derives $\varepsilon$ changed in last iteration)
for all productions of the form $NT \rightarrow NT_1 \ldots NT_n$
if (for all $1 \leq i \leq n$ $NT_i$ derives $\varepsilon$)
set $NT$ derives $\varepsilon$ to be true
First(β)

- $T \in \text{First}(\beta)$ if $T$ can appear as the first symbol in a derivation starting from $\beta$
  1) $T \in \text{First}(T)$
  2) $\text{First}(S) \subseteq \text{First}(S \beta)$
  3) $NT$ derives $\varepsilon$ implies $\text{First}(\beta) \subseteq \text{First}(NT \beta)$
  4) $NT \rightarrow S \beta$ implies $\text{First}(S \beta) \subseteq \text{First}(NT)$

- Notation
  - $T$ is a terminal, $NT$ is a nonterminal, $S$ is a terminal or nonterminal, and $\beta$ is a sequence of terminals or nonterminals
Rules + Request Generate System of Subset Inclusion Constraints

Grammar

\[
\begin{align*}
\text{Term'} & \rightarrow * \text{Int} \text{ Term'} \\
\text{Term'} & \rightarrow / \text{Int} \text{ Term'} \\
\text{Term'} & \rightarrow \varepsilon
\end{align*}
\]

Request: What is First( Term' )?

Constraints

First( * Num Term' ) \subseteq First( Term' )
First( / Num Term' ) \subseteq First( Term' )
First( * ) \subseteq First( * Num Term' )
First( / ) \subseteq First( / Num Term' )
* \in First( * )
/ \in First( / )

Rules

1) \( T \in \text{First}( T ) \)
2) First( S ) \subseteq First( S \beta )
3) \( NT \) derives \( \varepsilon \) implies First( \beta ) \subseteq First( NT \beta )
4) \( NT \rightarrow S \beta \) implies First( S \beta ) \subseteq First( NT )
Constraint Propagation Algorithm

Constraints

First(* Num Term’) ⊆ First(Term’)
First(/ Num Term’) ⊆ First(Term’)
First(*) ⊆ First(* Num Term’)
First(/) ⊆ First(/ Num Term’)

Solution

First(Term’) = {}
First(* Num Term’) = {}
First(/ Num Term’) = {}
First(*) = {*}
First(/) = {/}

Initialize Sets to {}
Propagate Constraints Until Fixed Point
Constraint Propagation Algorithm

Constraints
First( * Num Term’) ⊆ First( Term’)
First( / Num Term’) ⊆ First( Term’)
First( *) ⊆ First( * Num Term’)
First( /) ⊆ First( / Num Term’)
* ∈ First( *)
/ ∈ First( /)

Solution
First( Term’) = {}
First( * Num Term’) = {}
First( / Num Term’) = {}
First( *) = { *}
First( /) = { /}

Grammar

Term’ → * Int Term’
Term’ → / Int Term’
Term’ → \varepsilon
Constraint Propagation Algorithm

Constraints
First(* Num Term’) ⊆ First(Term’)
First(/ Num Term’) ⊆ First(Term’)
First(*) ⊆ First(* Num Term’)
First(/) ⊆ First(/ Num Term’)
* ∈ First(*)
/ ∈ First(/)

Solution
First(Term’) = {}
First(* Num Term’) = {*}
First(/ Num Term’) = {/}
First(*) = {*}
First(/) = {/}

Grammar
Term’ → * Int Term’
Term’ → / Int Term’
Term’ → ε
Constraint Propagation Algorithm

Constraints
First(\(*\) Num Term\) \subseteq First(\ Term\)
First(\/) Num Term\) \subseteq First(\ Term\)
First(*) \subseteq First(\(*\) Num Term\)
First(\/) \subseteq First(\/) Num Term\)
\* \in First(*)
\/ \in First(/

Solution
First(\ Term\) = \{*,/\}
First(\(*\) Num Term\) = \{*\}
First(\/) Num Term\) = \{/\}
First(*) = \{*\}
First(\/) = \{/\}

Grammar
Term' \rightarrow *Int Term'
Term' \rightarrow /Int Term'
Term' \rightarrow \varepsilon
### Constraint Propagation Algorithm

#### Constraints

\[
\begin{align*}
\text{First}(\ * \text{Num Term'} &\) \subseteq \text{First}(\text{Term'}) \\
\text{First}(\ / \text{Num Term'} &\) \subseteq \text{First}(\text{Term'}) \\
\text{First}(\*) &\subseteq \text{First}(\ * \text{Num Term'}) \\
\text{First}(\/) &\subseteq \text{First}(\ / \text{Num Term'}) \\
\ast &\in \text{First}(\*) \\
/ &\in \text{First}(\/)
\end{align*}
\]

#### Solution

\[
\begin{align*}
\text{First}(\text{Term'}) &\bigcap \{*,/\} \\
\text{First}(\ * \text{Num Term'}) &\bigcap \{\ast\} \\
\text{First}(\ / \text{Num Term'}) &\bigcap \{/\} \\
\text{First}(\*) &\bigcap \{\ast\} \\
\text{First}(\/) &\bigcap \{/\}
\end{align*}
\]

#### Grammar

\[
\begin{align*}
\text{Term'} &\rightarrow \ * \text{Int} \ \text{Term'} \\
\text{Term'} &\rightarrow \ / \text{Int} \ \text{Term'} \\
\text{Term'} &\rightarrow \ \varepsilon
\end{align*}
\]
Building A Parse Tree

- Have each procedure return the section of the parse tree for the part of the string it parsed
- Use exceptions to make code structure clean
Building Parse Tree In Example

Term()
    if (token == Int n)
        oldToken = token; token = NextToken();
        node = TermPrime();
        if (node == NULL) return oldToken;
        else return(new TermNode(oldToken, node);
    else throw SyntaxError

TermPrime()
    if (token == *) || (token == /)
        first = token; next = NextToken();
        if (next == Int n)
            token = NextToken();
            return(new TermPrimeNode(first, next, TermPrime());
        else throw SyntaxError
    else return(NULL)
Parse Tree for 2*3*4

Concrete Parse Tree

Desired Abstract Parse Tree
Why Use Hand-Coded Parser?

- Why not use parser generator?
- What do you do if your parser doesn’t work?
  - Recursive descent parser – write more code
  - Parser generator
    - Hack grammar
    - But if parser generator doesn’t work, nothing you can do
- If you have complicated grammar
  - Increase chance of going outside comfort zone of parser generator
  - Your parser may NEVER work
Bottom Line

- Recursive descent parser properties
  - Probably more work
  - But less risk of a disaster - you can almost always make a recursive descent parser work
  - May have easier time dealing with resulting code
    - Single language system
    - No need to deal with potentially flaky parser generator
    - No integration issues with automatically generated code
- If your parser development time is small compared to rest of project, or you have a really complicated language, use hand-coded recursive descent parser
Summary

• Top-Down Parsing
• Use Lookahead to Avoid Backtracking
• Parser is
  • Hand-Coded
  • Set of Mutually Recursive Procedures
Direct Generation of Abstract Tree

- TermPrime builds an incomplete tree
  - Missing leftmost child
  - Returns root and incomplete node
- \((\text{root}, \text{incomplete}) = \text{TermPrime}()\)
  - Called with token = *
  - Remaining tokens = 3 * 4

Remaining tokens computation:

- \(\text{root} \rightarrow \text{Term} \rightarrow 3 \times 4\)
- \(\text{incomplete} \rightarrow \text{Term} \rightarrow * \rightarrow \text{Int} \rightarrow 4\)

Missing left child to be filled in by caller
Code for Term

Term()
  if (token = Int n) →
    leftmostInt = token; token = NextToken();
    (root, incomplete) = TermPrime();
    if (root == NULL) return leftmostInt;
    incomplete.leftChild = leftmostInt;
    return root;
  else throw SyntaxError

Input to parse
2*3*4

---

token → Int
2
Code for Term

Term()
    if (token = Int n)
        leftmostInt = token; token = NextToken(); ←
        (root, incomplete) = TermPrime();
        if (root == NULL) return leftmostInt;
        incomplete.leftChild = leftmostInt;
        return root;
    else throw SyntaxError

Input to parse
2*3*4
Code for Term

Term()

    if (token = Int n)
        leftmostInt = token; token = NextToken();
        (root, incomplete) = TermPrime(); ←←
        if (root == NULL) return leftmostInt;
        incomplete.leftChild = leftmostInt;
        return root;
    else throw SyntaxError

Input to parse

2*3*4
Code for Term

Term()
    if (token = Int n)
        leftmostInt = token; token = NextToken();
        (root, incomplete) = TermPrime();
        if (root == NULL) return leftmostInt; complete.leftChild = leftmostInt;
        return root;
    else throw SyntaxError

Input to parse
2*3*4
Code for Term

Term()
    if (token = Int n)
        leftmostInt = token; token = NextToken();
        (root, incomplete) = TermPrime();
        if (root == NULL) return leftmostInt;
        incomplete.leftChild = leftmostInt;
        return root;
    else throw SyntaxError

Input to parse
2*3*4
Code for Term

Term()
    if (token = Int n)
        leftmostInt = token; token = NextToken();
        (root, incomplete) = TermPrime();
        if (root == NULL) return leftmostInt;
        incomplete.leftChild = leftmostInt;
        return root;
    else throw SyntaxError

Input to parse
2*3*4
TermPrime()
  if (token = *) || (token = /)
    op = token; next = NextToken();
  if (next = Int n)
    token = NextToken();
    (root, incomplete) = TermPrime();
    if (root == NULL)
      root = new ExprNode(NULL, op, next);
      return (root, root);
    else
      newChild = new ExprNode(NULL, op, next);
      incomplete.leftChild = newChild;
      return (root, newChild);
  else throw SyntaxError
else return(NULL, NULL)