
Introduction to Dataflow 
Analysis



Value Numbering Summary

• Forward symbolic execution of basic block

• Maps
– Var2Val – symbolic value for each variable

– Exp2Val – value of each evaluated expression

– Exp2Tmp – tmp that holds value of each evaluated expression

• Algorithm
– For each statement

• If variables in RHS not in the Var2Val add it with a new value

• If RHS expression in Exp2Tmp use that Temp

• If not add RHS expression to Exp2Val with new value

• Copy the value into a new tmp and add to EXp2Tmp



Copy Propagation Summary

• Forward Propagation within basic block

• Maps

– tmp2var: tells which variable to use instead of a given temporary 
variable

– var2set: inverse of tmp to var. tells which temps are mapped to a 
given variable by tmp to var

• Algorithm
– For each statement

• If any tmp variable in the RHS is in tmp2var replace it with var

• If LHS var in var2set remove the variables in the set in tmp2var



Dead Code Elimination Summary

• Backward Propagation within basic block

• Map

– A set of variables that are needed later in computation

• Algorithm

– Every statement encountered

• If LHS is not in the set, remove the statement

• Else put all the variables in the RHS into the set



Summary So far… what’s next

• Till now: How to analyze and transform 
within a basic block

• Next: How to do it for the entire procedure



Outline

• Reaching Definitions

• Available Expressions

• Liveness



Reaching Definitions

• Concept of definition and use

– a = x+y

– is a definition of a

– is a use of x and y

• A definition reaches a use if 

– value written by definition

– may be read by use



Reaching Definitions

s = 0; 

a = 4; 

i = 0;

k == 0 

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1; 
return s



Reaching Definitions and 
Constant Propagation

• Is a use of a variable a constant?

– Check all reaching definitions

– If all assign variable to same constant

– Then use is in fact a constant

• Can replace variable with constant



Is a Constant in s = s+a*b?

s = 0; 

a = 4; 

i = 0;

k == 0 

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1; 
return s

Yes!
On all reaching 

definitions

a = 4



Constant Propagation 
Transform

s = 0; 

a = 4; 

i = 0;

k == 0 

b = 1; b = 2;

i < n

s = s + 4*b;

i = i + 1; 
return s

Yes!
On all reaching 

definitions

a = 4



Is b Constant in s = s+a*b?

s = 0; 

a = 4; 

i = 0;

k == 0 

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1; 
return s

No!
One reaching 

definition with

b = 1

One reaching 

definition with

b = 2



Splitting
Preserves Information Lost At Merges

s = 0; 

a = 4; 

i = 0;

k == 0 

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1; 
return s

s = 0; 

a = 4; 

i = 0;

k == 0 

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1; 
return s

i < n

s = s + a*b;

i = i + 1; 
return s



Splitting
Preserves Information Lost At Merges

s = 0; 

a = 4; 

i = 0;

k == 0 

b = 1; b = 2;

i < n

s = s + a*b;

i = i + 1; 
return s

s = 0; 

a = 4; 

i = 0;

k == 0 

b = 1; b = 2;

i < n

s = s + a*1;

i = i + 1; 
return s

i < n

s = s + a*2;

i = i + 1; 
return s



Computing Reaching 
Definitions

• Compute with sets of definitions

– represent sets using bit vectors

– each definition has a position in bit vector

• At each basic block, compute

– definitions that reach start of block

– definitions that reach end of block

• Do computation by simulating execution of 
program until reach fixed point



1: s = 0; 

2: a = 4; 

3: i = 0;

k == 0 

4: b = 1; 5: b = 2;

0000000

11100001110000

1111100

1111100
1111100

1111111

1111111
1111111

1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1110000

1111000 1110100

1111100

0101111
1111100

1111111
i < n

1111111
return s

6: s = s + a*b;

7: i = i + 1;



Formalizing Analysis

• Each basic block has

– IN - set of definitions that reach beginning of block

– OUT - set of definitions that reach end of block

– GEN - set of definitions generated in block

– KILL - set of definitions killed in block

• GEN[s = s + a*b; i = i + 1;] = 0000011

• KILL[s = s + a*b; i = i + 1;] = 1010000

• Compiler scans each basic block to derive GEN 
and KILL sets



Dataflow Equations

• IN[b] = OUT[b1] U ... U OUT[bn]

– where b1, ..., bn are predecessors of b in CFG

• OUT[b] = (IN[b] - KILL[b]) U GEN[b]

• IN[entry] = 0000000

• Result: system of equations



Solving Equations

• Use fixed point algorithm

• Initialize with solution of OUT[b] = 0000000

• Repeatedly apply equations

– IN[b] = OUT[b1] U ... U OUT[bn]

– OUT[b] = (IN[b] - KILL[b]) U GEN[b]

• Until reach fixed point 

• Until equation application has no further effect

• Use a worklist to track which equation 
applications may have a further effect



Reaching Definitions Algorithm

for all nodes n in N 
OUT[n] = emptyset; // OUT[n] = GEN[n];

IN[Entry] = emptyset; 
OUT[Entry] = GEN[Entry]; 
Changed = N - { Entry }; // N = all nodes in graph

while (Changed != emptyset)
choose a node n in Changed;
Changed = Changed - { n };

IN[n] = emptyset;
for all nodes p in predecessors(n) 

IN[n] = IN[n] U OUT[p];

OUT[n] = GEN[n] U (IN[n] - KILL[n]);

if (OUT[n] changed)
for all nodes s in successors(n) 

Changed = Changed U { s };



Questions

• Does the algorithm halt?

– yes, because transfer function is monotonic

– if increase IN, increase OUT

– in limit, all bits are 1

• If bit is 0, does the corresponding definition ever 
reach basic block?

• If bit is 1, is does the corresponding definition 
always reach the basic block?



1: s = 0; 

2: a = 4; 

3: i = 0;

k == 0 

4: b = 1; 5: b = 2;

0000000

11100001110000

1111100

1111100
1111100

1111111

1111111
1111111

1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1110000

1111000 1110100

1111100

0101111
1111100

1111111
i < n

1111111
return s

6: s = s + a*b;

7: i = i + 1;



Outline

• Reaching Definitions

• Available Expressions

• Liveness



Available Expressions

• An expression x+y is available at a point p if 

– every path from the initial node to p must evaluate 
x+y before reaching p, 

– and there are no assignments to x or y after the 
evaluation but before p.

• Available Expression information can be used to 
do global (across basic blocks) CSE

• If expression is available at use, no need to 
reevaluate it



Example: Available Expression

a = b + c

d = e + f

f = a + c

g = a + c

j = a + b + c + d

b = a + d

h = c + f



Is the Expression Available?

a = b + c

d = e + f

f = a + c

g = a + c

j = a + b + c + d

b = a + d

h = c + f

YES!



Is the Expression Available?

a = b + c

d = e + f

f = a + c

g = a + c

j = a + b + c + d

b = a + d

h = c + f

YES!



Is the Expression Available?

a = b + c

d = e + f

f = a + c

g = a + c

j = a + b + c + d

b = a + d

h = c + f

NO!



Is the Expression Available?

a = b + c

d = e + f

f = a + c

g = a + c

j = a + b + c + d

b = a + d

h = c + f

NO!



Is the Expression Available?

a = b + c

d = e + f

f = a + c

g = a + c

j = a + b + c + d

b = a + d

h = c + f

NO!



Is the Expression Available?

a = b + c

d = e + f

f = a + c

g = a + c

j = a + b + c + d

b = a + d

h = c + f

YES!



Is the Expression Available?

a = b + c

d = e + f

f = a + c

g = a + c

j = a + b + c + d

b = a + d

h = c + f

YES!



Use of Available Expressions

a = b + c

d = e + f

f = a + c

g = a + c

j = a + b + c + d

b = a + d

h = c + f



Use of Available Expressions

a = b + c

d = e + f

f = a + c

g = a + c

j = a + b + c + d

b = a + d

h = c + f



Use of Available Expressions

a = b + c

d = e + f

f = a + c

g = a + c

j = a + b + c + d

b = a + d

h = c + f



Use of Available Expressions

a = b + c

d = e + f

f = a + c

g = f

j = a + b + c + d

b = a + d

h = c + f



Use of Available Expressions

a = b + c

d = e + f

f = a + c

g = f

j = a + b + c + d

b = a + d

h = c + f



Use of Available Expressions

a = b + c

d = e + f

f = a + c

g = f

j = a + c +  b + d

b = a + d

h = c + f



Use of Available Expressions

a = b + c

d = e + f

f = a + c

g = f

j = f +  b + d

b = a + d

h = c + f



Use of Available Expressions

a = b + c

d = e + f

f = a + c

g = f

j = f +  b + d

b = a + d

h = c + f



Computing Available 
Expressions

• Represent sets of expressions using bit vectors

• Each expression corresponds to a bit

• Run dataflow algorithm similar to reaching 
definitions

• Big difference

– definition reaches a basic block if it comes from ANY 
predecessor in CFG

– expression is available at a basic block only if it is 
available from ALL predecessors in CFG 



a = x+y;

x == 0 

x = z;

b = x+y;

i < n

c = x+y;

i = i+c;
d = x+y

i = x+y; 

Expressions

1: x+y

2: i<n

3: i+c

4: x==0

0000

1001

1000

1000

1100 1100



a = x+y;
t = a

x == 0 

x = z;

b = x+y;

t = b

i < n

c = x+y;

i = i+c;
d = x+y

i = x+y; 

Expressions

1: x+y

2: i<n

3: i+c

4: x==0

0000

1001

1000

1000

1100 1100

Global CSE Transform

must use same temp

for CSE in all blocks



a = x+y;
t = a

x == 0 

x = z;

b = x+y;

t = b

i < n

c = t;

i = i+c;
d = t

i = t; 

Expressions

1: x+y

2: i<n

3: i+c

4: x==0

0000

1001

1000

1000

1100 1100

Global CSE Transform

must use same temp

for CSE in all blocks



Formalizing Analysis

• Each basic block has

– IN - set of expressions available at start of block

– OUT - set of expressions available at end of block

– GEN - set of expressions computed in block

– KILL - set of expressions killed in in block

• GEN[x = z; b = x+y] = 1000

• KILL[x = z; b = x+y] = 1001

• Compiler scans each basic block to derive GEN 
and KILL sets



Dataflow Equations

• IN[b] = OUT[b1]  ...  OUT[bn]

– where b1, ..., bn are predecessors of b in CFG

• OUT[b] = (IN[b] - KILL[b]) U GEN[b]

• IN[entry] = 0000

• Result: system of equations



Solving Equations

• Use fixed point algorithm

• IN[entry] = 0000

• Initialize OUT[b] = 1111

• Repeatedly apply equations

– IN[b] = OUT[b1]  ...  OUT[bn]

– OUT[b] = (IN[b] - KILL[b]) U GEN[b]

• Use a worklist algorithm to reach fixed point



Available Expressions 
Algorithm

for all nodes n in N

OUT[n] = E;  // OUT[n] = E - KILL[n];

IN[Entry] = emptyset; 

OUT[Entry] = GEN[Entry]; 

Changed = N - { Entry }; // N = all nodes in graph

while (Changed != emptyset)

choose a node n in Changed;

Changed = Changed - { n };

IN[n] = E; // E is set of all expressions

for all nodes p in predecessors(n) 

IN[n] = IN[n]  OUT[p];

OUT[n] = GEN[n] U (IN[n] - KILL[n]);

if (OUT[n] changed)

for all nodes s in successors(n) 

Changed = Changed U { s };



Questions

• Does algorithm always halt?

• If expression is available in some execution, is it 
always marked as available in analysis?

• If expression is not available in some execution, 
can it be marked as available in analysis?



Duality In Two Algorithms

• Reaching definitions

– Confluence operation is set union

– OUT[b] initialized to empty set

• Available expressions

– Confluence operation is set intersection

– OUT[b] initialized to set of available expressions

• General framework for dataflow algorithms.

• Build parameterized dataflow analyzer once, use 
for all dataflow problems



Outline

• Reaching Definitions

• Available Expressions

• Liveness



Liveness Analysis

• A variable v is live at point p if 

– v is used along some path starting at p, and 

– no definition of v along the path before the use.

• When is a variable v dead at point p?

– No use of  v on any path from p to exit node, or

– If all paths from p redefine v before using v.



What Use is Liveness 
Information?

• Register allocation.

– If a variable is dead, can reassign its register

• Dead code elimination.

– Eliminate assignments to variables not read later.

– But must not eliminate last assignment to variable 
(such as instance variable) visible outside CFG.

– Can eliminate other dead assignments.

– Handle by making all externally visible variables live on 
exit from CFG



Conceptual Idea of Analysis

• Simulate execution

• But start from exit and go backwards in CFG

• Compute liveness information from end to 
beginning of basic blocks



Liveness Example

a = x+y;

t = a;

c = a+x;

x == 0 

b = t+z;

c = y+1; 

1100100

1110000

• Assume a,b,c visible 
outside method

• So are live on exit

• Assume x,y,z,t not 
visible

• Represent Liveness 
Using Bit Vector

– order is abcxyzt

1100111

1000111

1100100

0101110

a b c x y z t

a b c x y z t

a b c x y z t



Dead Code Elimination

a = x+y;

t = a;

c = a+x;

x == 0 

b = t+z;

c = y+1; 

1100100

1110000

• Assume a,b,c visible 
outside method

• So are live on exit

• Assume x,y,z,t not 
visible

• Represent Liveness 
Using Bit Vector

– order is abcxyzt

1100111

1000111

1100100

0101110

a b c x y z t

a b c x y z t

a b c x y z t



Formalizing Analysis

• Each basic block has

– IN - set of variables live at start of block

– OUT - set of variables live at end of block

– USE - set of variables with upwards exposed uses in block

– DEF - set of variables defined in block

• USE[x = z; x = x+1;] = { z } (x not in USE)

• DEF[x = z; x = x+1;y = 1;] = {x, y}

• Compiler scans each basic block to derive USE and 
DEF sets



Algorithm
for all nodes n in N - { Exit } 

IN[n] = emptyset;
OUT[Exit] = emptyset; 
IN[Exit] = use[Exit];
Changed = N - { Exit };

while (Changed != emptyset)
choose a node n in Changed;
Changed = Changed - { n };

OUT[n] = emptyset;
for all nodes s in successors(n) 

OUT[n] = OUT[n] U IN[p];

IN[n] = use[n] U (out[n] - def[n]);

if (IN[n] changed)
for all nodes p in predecessors(n)

Changed = Changed U { p };



Similar to Other Dataflow 
Algorithms

• Backwards analysis, not forwards

• Still have transfer functions

• Still have confluence operators

• Can generalize framework to work for both 
forwards and backwards analyses



Comparison

Available Expressions

for all nodes n in N

OUT[n] = E;  

IN[Entry] = emptyset; 

OUT[Entry] = GEN[Entry]; 

Changed = N - { Entry }; 

while (Changed != emptyset)

choose a node n in Changed;

Changed = Changed - { n };

IN[n] = E; 

for all nodes p in predecessors(n) 

IN[n] = IN[n]  OUT[p];

OUT[n] = GEN[n] U (IN[n] - KILL[n]);

if (OUT[n] changed)

for all nodes s in successors(n) 

Changed = Changed U { s };

Reaching Definitions

for all nodes n in N 

OUT[n] = emptyset; 

IN[Entry] = emptyset; 

OUT[Entry] = GEN[Entry]; 

Changed = N - { Entry }; 

while (Changed != emptyset)

choose a node n in Changed;

Changed = Changed - { n };

IN[n] = emptyset;

for all nodes p in predecessors(n) 

IN[n] = IN[n] U OUT[p];

OUT[n] = GEN[n] U (IN[n] - KILL[n]);

if (OUT[n] changed)

for all nodes s in successors(n) 

Changed = Changed U { s };

Liveness

for all nodes n in N - { Exit } 

IN[n] = emptyset;

OUT[Exit] = emptyset; 

IN[Exit] = use[Exit];

Changed = N - { Exit };

while (Changed != emptyset)

choose a node n in Changed;

Changed = Changed - { n };

OUT[n] = emptyset;

for all nodes s in successors(n) 

OUT[n] = OUT[n] U IN[p];

IN[n] = use[n] U (out[n] - def[n]);

if (IN[n] changed)

for all nodes p in predecessors(n)

Changed = Changed U { p };



Comparison

Available Expressions

for all nodes n in N

OUT[n] = E;  

IN[Entry] = emptyset; 

OUT[Entry] = GEN[Entry]; 

Changed = N - { Entry }; 

while (Changed != emptyset)

choose a node n in Changed;

Changed = Changed - { n };

IN[n] = E; 

for all nodes p in predecessors(n) 

IN[n] = IN[n]  OUT[p];

OUT[n] = GEN[n] U (IN[n] - KILL[n]);

if (OUT[n] changed)

for all nodes s in successors(n) 

Changed = Changed U { s };

Reaching Definitions

for all nodes n in N 

OUT[n] = emptyset; 

IN[Entry] = emptyset; 

OUT[Entry] = GEN[Entry]; 

Changed = N - { Entry }; 

while (Changed != emptyset)

choose a node n in Changed;

Changed = Changed - { n };

IN[n] = emptyset;

for all nodes p in predecessors(n) 

IN[n] = IN[n] U OUT[p];

OUT[n] = GEN[n] U (IN[n] - KILL[n]);

if (OUT[n] changed)

for all nodes s in successors(n) 

Changed = Changed U { s };



Comparison

Reaching Definitions

for all nodes n in N 

OUT[n] = emptyset; 

IN[Entry] = emptyset; 

OUT[Entry] = GEN[Entry]; 

Changed = N - { Entry }; 

while (Changed != emptyset)

choose a node n in Changed;

Changed = Changed - { n };

IN[n] = emptyset;

for all nodes p in predecessors(n) 

IN[n] = IN[n] U OUT[p];

OUT[n] = GEN[n] U (IN[n] - KILL[n]);

if (OUT[n] changed)

for all nodes s in successors(n) 

Changed = Changed U { s };

Liveness

for all nodes n in N

IN[n] = emptyset;

OUT[Exit] = emptyset; 

IN[Exit] = use[Exit];

Changed = N - { Exit };

while (Changed != emptyset)

choose a node n in Changed;

Changed = Changed - { n };

OUT[n] = emptyset;

for all nodes s in successors(n) 

OUT[n] = OUT[n] U IN[p];

IN[n] = use[n] U (out[n] - def[n]);

if (IN[n] changed)

for all nodes p in predecessors(n)

Changed = Changed U { p };



Analysis Information Inside 
Basic Blocks

• One detail:

– Given dataflow information at IN and OUT of node

– Also need to compute information at each statement of 
basic block

– Simple propagation algorithm usually works fine

– Can be viewed as restricted case of dataflow analysis



Pessimistic vs. Optimistic 
Analyses

• Available expressions is optimistic                                             
(for common sub-expression elimination)

– Assume expressions are available at start of analysis

– Analysis eliminates all that are not available

– Cannot stop analysis early and use current result

• Live variables is pessimistic (for dead code elimination)

– Assume all variables are live at start of analysis

– Analysis finds variables that are dead

– Can stop analysis early and use current result

• Dataflow setup same for both analyses

• Optimism/pessimism depends on intended use



Summary
• Basic Blocks and Basic Block Optimizations

– Copy and constant propagation

– Common sub-expression elimination

– Dead code elimination

• Dataflow Analysis
– Control flow graph

– IN[b], OUT[b], transfer functions, join points

• Paired analyses and transformations
– Reaching definitions/constant propagation

– Available expressions/common sub-expression elimination

– Liveness analysis/Dead code elimination

• Stacked analysis and transformations work together


