

Introduction to Dataflow Analysis

Value Numbering Summary

- Forward symbolic execution of basic block
- Maps
- Var2Val - symbolic value for each variable
- Exp2Val - value of each evaluated expression
- Exp2Tmp - tmp that holds value of each evaluated expression
- Algorithm
- For each statement
- If variables in RHS not in the Var2Val add it with a new value
- If RHS expression in Exp2Tmp use that Temp
- If not add RHS expression to Exp2Val with new value
- Copy the value into a new tmp and add to EXp2Tmp

Copy Propagation Summary

- Forward Propagation within basic block
- Maps
- tmp2var: tells which variable to use instead of a given temporary variable
- var2set: inverse of tmp to var. tells which temps are mapped to a given variable by tmp to var
- Algorithm
- For each statement
- If any tmp variable in the RHS is in tmp2var replace it with var
- If LHS var in var2set remove the variables in the set in tmp2var

Dead Code Elimination Summary

- Backward Propagation within basic block
- Map
- A set of variables that are needed later in computation
- Algorithm
- Every statement encountered
- If LHS is not in the set, remove the statement
- Else put all the variables in the RHS into the set

Summary So far... what's next

- Till now: How to analyze and transform within a basic block
- Next: How to do it for the entire procedure

Outline

- Reaching Definitions
- Available Expressions
- Liveness

Reaching Definitions

- Concept of definition and use
$-\mathrm{a}=\mathrm{x}+\mathrm{y}$
- is a definition of a
- is a use of x and y
- A definition reaches a use if
- value written by definition
-may be read by use

Reaching Definitions

Reaching Definitions and Constant Propagation

- Is a use of a variable a constant?
- Check all reaching definitions
- If all assign variable to same constant
- Then use is in fact a constant
- Can replace variable with constant

Is a Constant in $\mathrm{s}=\mathrm{s}+\mathrm{a} * \mathrm{~b}$?

Yes!

On all reaching definitions

$$
a=4
$$

Constant Propagation Transform

Is b Constant in $\mathrm{s}=\mathrm{s}+\mathrm{a} * \mathrm{~b}$?

No!
One reaching definition with
b=1
One reaching definition with

$$
\mathrm{b}=2
$$

Computing Reaching Definitions

- Compute with sets of definitions
- represent sets using bit vectors
- each definition has a position in bit vector
- At each basic block, compute
- definitions that reach start of block
- definitions that reach end of block
- Do computation by simulating execution of program until reach fixed point

Formalizing Analysis

- Each basic block has
- IN - set of definitions that reach beginning of block
- OUT - set of definitions that reach end of block
- GEN - set of definitions generated in block
- KILL - set of definitions killed in block
- GEN[s = s + a*b; i = i + 1;] = 0000011
- KILL[s = s + a*b; i = i + 1;] = 1010000
- Compiler scans each basic block to derive GEN and KILL sets

Dataflow Equations

- IN[b] = OUT[b1] U ... U OUT[bn]
- where b1, ..., bn are predecessors of b in CFG
- OUT[b] = (IN[b] - KILL[b]) U GEN[b]
- IN[entry] = 0000000
- Result: system of equations

Solving Equations

- Use fixed point algorithm
- Initialize with solution of OUT[b] = 0000000
- Repeatedly apply equations
- IN[b] = OUT[b1] U ... U OUT[bn]
- OUT[b] $=(\mathrm{IN}[\mathrm{b}]-$ KILL[b]) U GEN[b]
- Until reach fixed point
- Until equation application has no further effect
- Use a worklist to track which equation applications may have a further effect

Reaching Definitions Algorithm

for all nodes n in N OUT[n] = emptyset; // OUT[n] = GEN[n];
IN[Entry] = emptyset;
OUT[Entry] = GEN[Entry];
Changed = N - \{ Entry \}; // $\mathrm{N}=$ all nodes in graph
while (Changed != emptyset)
choose a node n in Changed;
Changed = Changed - $\{n\}$;
IN[n] = emptyset;
for all nodes p in predecessors(n)
IN[n] = IN[n] U OUT[p];
OUT[n] = GEN[n] U (IN[n] - KILL[n]);
if (OUT[n] changed)
for all nodes s in successors(n)
Changed = Changed U \{ s \};

Questions

- Does the algorithm halt?
- yes, because transfer function is monotonic
- if increase IN, increase OUT
- in limit, all bits are 1
- If bit is 0 , does the corresponding definition ever reach basic block?
- If bit is 1 , is does the corresponding definition always reach the basic block?

Outline

- Reaching Definitions
- Available Expressions
- Liveness

Available Expressions

- An expression $x+y$ is available at a point p if
- every path from the initial node to p must evaluate $x+y$ before reaching p,
- and there are no assignments to x or y after the evaluation but before p.
- Available Expression information can be used to do global (across basic blocks) CSE
- If expression is available at use, no need to reevaluate it

Example: Available Expression

Is the Expression Available?

Use of Available Expressions

Computing Available Expressions

- Represent sets of expressions using bit vectors
- Each expression corresponds to a bit
- Run dataflow algorithm similar to reaching definitions
- Big difference
- definition reaches a basic block if it comes from(ANY) predecessor in CFG
- expression is available at a basic block only if it is available from ALL)predecessors in CFG

0000

Global CSE Transform $a=x+y$;

0000

Expressions
1: $x+y$
2: $\mathrm{i}<\mathrm{n}$
3: i+c
4: $x==0$
must use same temp for CSE in all blocks

Formalizing Analysis

- Each basic block has
- IN - set of expressions available at start of block
- OUT - set of expressions available at end of block
- GEN - set of expressions computed in block
- KILL - set of expressions killed in in block
- $\operatorname{GEN}[x=z ; b=x+y]=1000$
- KILL[$\mathrm{x}=\mathrm{z} ; \mathrm{b}=\mathrm{x}+\mathrm{y}]=1001$
- Compiler scans each basic block to derive GEN and KILL sets

Dataflow Equations

- $\mathrm{IN}[\mathrm{b}]=$ OUT[b1] $\cap \ldots \cap$ OUT[bn]
- where b1, .., bn are predecessors of b in CFG
- OUT[b] = (IN[b] - KILL[b]) U GEN[b]
- IN[entry] = 0000
- Result: system of equations

Solving Equations

- Use fixed point algorithm
- IN[entry] = 0000
- Initialize OUT[b] = 1111
- Repeatedly apply equations
- IN[b] = OUT[b1] $\cap \ldots \cap$ OUT[bn]
- OUT[b] = (IN[b] - KILL[b]) U GEN[b]
- Use a worklist algorithm to reach fixed point

Available Expressions Algorithm

```
for all nodes n in N
    OUT[n] = E; // OUT[n] = E - KILL[n];
IN[Entry] = emptyset;
OUT[Entry] = GEN[Entry];
Changed = N - { Entry }; // N = all nodes in graph
while (Changed != emptyset)
    choose a node n in Changed;
    Changed = Changed - {n };
    IN[n] = E; // E is set of all expressions
    for all nodes p in predecessors(n)
        IN[n] = IN[n] \cap OUT[p];
    OUT[n] = GEN[n] U (IN[n] - KILL[n]);
    if (OUT[n] changed)
        for all nodes s in successors(n)
        Changed = Changed U { s };
```


Questions

- Does algorithm always halt?
- If expression is available in some execution, is it always marked as available in analysis?
- If expression is not available in some execution, can it be marked as available in analysis?

Duality In Two Algorithms

- Reaching definitions
- Confluence operation is set union
- OUT[b] initialized to empty set
- Available expressions
- Confluence operation is set intersection
- OUT[b] initialized to set of available expressions
- General framework for dataflow algorithms.
- Build parameterized dataflow analyzer once, use for all dataflow problems

Outline

- Reaching Definitions
- Available Expressions
- Liveness

Liveness Analysis

- A variable v is live at point p if
- v is used along some path starting at p, and
- no definition of v along the path before the use.
- When is a variable v dead at point p ?
- No use of v on any path from p to exit node, or
- If all paths from p redefine v before using v.

What Use is Liveness Information?

- Register allocation.
- If a variable is dead, can reassign its register
- Dead code elimination.
- Eliminate assignments to variables not read later.
- But must not eliminate last assignment to variable (such as instance variable) visible outside CFG.
- Can eliminate other dead assignments.
- Handle by making all externally visible variables live on exit from CFG

Conceptual Idea of Analysis

- Simulate execution
- But start from exit and go backwards in CFG
- Compute liveness information from end to beginning of basic blocks

Liveness Example

- Assume a,b,c visible outside method
- So are live on exit
- Assume $x_{r} y, z, t$ not visible
- Represent Liveness Using Bit Vector
- order is abcxyzt

Dead Code Elimination

- Assume a,b,c visible outside method
- So are live on exit
- Assume x, y, z, t not visible
- Represent Liveness Using Bit Vector
- order is abcxyzt

Formalizing Analysis

- Each basic block has
- IN - set of variables live at start of block
- OUT - set of variables live at end of block
- USE - set of variables with upwards exposed uses in block
- DEF - set of variables defined in block
- USE $[x=z ; x=x+1 ;]=\{z\}(x$ not in USE)
- $\operatorname{DEF}[\mathrm{x}=\mathrm{z} ; \mathrm{x}=\mathrm{x}+1 ; \mathrm{y}=1 ;]=\{\mathrm{x}, \mathrm{y}\}$
- Compiler scans each basic block to derive USE and DEF sets

Algorithm

for all nodes n in N - \{ Exit \}
IN[n] = emptyset;
OUT[Exit] = emptyset;
IN[Exit] = use[Exit];
Changed $=\mathrm{N}-\{$ Exit $\} ;$
while (Changed != emptyset)
choose a node n in Changed;
Changed = Changed - $\{\mathrm{n}\}$;
OUT[n] = emptyset;
for all nodes s in successors(n) OUT[n] = OUT[n] U IN[p];

IN[n] = use[n] U (out[n] - def[n]);
if (IN[n] changed)
for all nodes p in predecessors(n) Changed = Changed $U\{p$;

Similar to Other Dataflow Algorithms

- Backwards analysis, not forwards
- Still have transfer functions
- Still have confluence operators
- Can generalize framework to work for both forwards and backwards analyses

Comparison

Reaching Definitions

for all nodes n in N
OUT[n] = emptyset;
IN[Entry] = emptyset;
OUT[Entry] = GEN[Entry];
Changed $=\mathrm{N}$ - $\{$ Entry \};
while (Changed != emptyset)
choose a node n in Changed;
Changed = Changed - $\{\mathrm{n}\}$;
IN[n] = emptyset;
for all nodes p in predecessors(n) $\mathrm{IN}[\mathrm{n}]=\mathrm{IN}[\mathrm{n}] \mathrm{U}$ OUT[p];

OUT[n] = GEN[n] U (IN[n] - KILL[n]);
if (OUT[n] changed) for all nodes s in successors(n)

Changed $=$ Changed $U\{s$;

Available Expressions

Liveness

```
for all nodes n in N
    OUT[n] = E;
IN[Entry] = emptyset;
OUT[Entry] = GEN[Entry];
Changed = N - { Entry };
while (Changed != emptyset)
    choose a node n in Changed;
    Changed = Changed - { n };
    IN[n] = E;
    for all nodes p in predecessors(n)
        IN[n] = IN[n] \cap OUT[p];
    OUT[n] = GEN[n] U (IN[n] - KILL[n]);
    if (OUT[n] changed)
        for all nodes s in successors(n)
        Changed = Changed U { s };
```

for all nodes n in N - \{ Exit \}
IN[n] = emptyset;
OUT[Exit] = emptyset;
IN[Exit] = use[Exit];
Changed $=\mathrm{N}-\{$ Exit $\} ;$
while (Changed != emptyset)
choose a node n in Changed;
Changed = Changed - $\{\mathrm{n}$ \};
OUT[n] = emptyset;
for all nodes s in successors(n) OUT[n] = OUT[n] U IN[p];

IN[n] = use[n] U (out[n] - def[n]);
if (IN[n] changed) for all nodes p in predecessors(n)

Changed $=$ Changed $U\{p\} ;$

Comparison

Reaching Definitions

for all nodes n in N
OUT[n] = emptyset;
IN[Entry] = emptyset;
OUT[Entry] = GEN[Entry];
Changed = N - \{ Entry \};
while (Changed != emptyset)
choose a node n in Changed;
Changed = Changed - $\{\mathrm{n}$ \};
IN[n] = emptyset;
for all nodes p in predecessors(n)
$\operatorname{IN}[n]=\operatorname{IN}[n]$ U OUT[p];
OUT[n] = GEN[n] U (IN[n] - KILL[n]);
if (OUT[n] changed)
for all nodes s in successors(n)
Changed = Changed U \{ s \};

Available Expressions

```
for all nodes n in N
    OUT[n] = E;
IN[Entry] = emptyset;
OUT[Entry] = GEN[Entry];
Changed = N - { Entry };
while (Changed != emptyset)
    choose a node n in Changed;
    Changed = Changed - { n };
    IN[n] = E;
    for all nodes p in predecessors(n)
        IN[n] = IN[n] \cap OUT[p];
    OUT[n] = GEN[n] U (IN[n] - KILL[n]);
    if (OUT[n] changed)
        for all nodes s in successors(n)
        Changed = Changed U { s };
```


Comparison

Reaching Definitions

for all nodes n in N
OUT[n] = emptyset;
IN[Entry] = emptyset;
OUT[Entry] = GEN[Entry];
Changed = N - \{ Entry \};
while (Changed != emptyset)
choose a node n in Changed;
Changed = Changed - $\{\mathrm{n}$ \};
IN[n] = emptyset;
for all nodes p in predecessors(n)
$\operatorname{IN}[n]=\operatorname{IN}[n]$ U OUT[p];
OUT[n] = GEN[n] U (IN[n] - KILL[n]);
if (OUT[n] changed)
for all nodes s in successors(n)
Changed = Changed U \{ s \};

Liveness

for all nodes n in N
IN[n] = emptyset;
OUT[Exit] = emptyset;
IN[Exit] = use[Exit];
Changed $=\mathrm{N}-\{$ Exit $\} ;$

$$
\begin{aligned}
& \text { while (Changed != emptyset) } \\
& \text { choose a node } n \text { in Changed; } \\
& \text { Changed = Changed - }\{n\} ; \\
& \text { OUT[n] = emptyset; } \\
& \text { for all nodes s in successors(n) } \\
& \text { OUT[n] = OUT[n] U IN[p]; }
\end{aligned}
$$

IN[n] = use[n] U (out[n] - def[n]);
if (IN[n] changed) for all nodes p in predecessors(n)

Changed $=$ Changed $U\{p$;

Analysis Information Inside Basic Blocks

- One detail:
- Given dataflow information at IN and OUT of node
- Also need to compute information at each statement of basic block
- Simple propagation algorithm usually works fine
- Can be viewed as restricted case of dataflow analysis

Pessimistic vs. Optimistic Analyses

- Available expressions is optimistic (for common sub-expression elimination)
- Assume expressions are available at start of analysis
- Analysis eliminates all that are not available
- Cannot stop analysis early and use current result
- Live variables is pessimistic (for dead code elimination)
- Assume all variables are live at start of analysis
- Analysis finds variables that are dead
- Can stop analysis early and use current result
- Dataflow setup same for both analyses
- Optimism/pessimism depends on intended use

Summary

- Basic Blocks and Basic Block Optimizations
- Copy and constant propagation
- Common sub-expression elimination
- Dead code elimination
- Dataflow Analysis
- Control flow graph
- IN[b], OUT[b], transfer functions, join points
- Paired analyses and transformations
- Reaching definitions/constant propagation
- Available expressions/common sub-expression elimination
- Liveness analysis/Dead code elimination
- Stacked analysis and transformations work together

