Introduction to Dataflow Analysis
Value Numbering Summary

- Forward symbolic execution of basic block
- Maps
 - Var2Val – symbolic value for each variable
 - Exp2Val – value of each evaluated expression
 - Exp2Tmp – tmp that holds value of each evaluated expression
- Algorithm
 - For each statement
 - If variables in RHS not in the Var2Val add it with a new value
 - If RHS expression in Exp2Tmp use that Temp
 - If not add RHS expression to Exp2Val with new value
 - Copy the value into a new tmp and add to EXp2Tmp
Copy Propagation Summary

- **Forward Propagation within basic block**
- **Maps**
 - `tmp2var`: tells which variable to use instead of a given temporary variable
 - `var2set`: inverse of `tmp` to `var`. Tells which temps are mapped to a given variable by `tmp` to `var`
- **Algorithm**
 - For each statement
 - If any `tmp` variable in the RHS is in `tmp2var` replace it with `var`
 - If LHS `var` in `var2set` remove the variables in the set in `tmp2var`
Dead Code Elimination Summary

- Backward Propagation within basic block
- Map
 - A set of variables that are needed later in computation
- Algorithm
 - Every statement encountered
 - If LHS is not in the set, remove the statement
 - Else put all the variables in the RHS into the set
Summary So far... what’s next

• Till now: How to analyze and transform within a basic block

• Next: How to do it for the entire procedure
Outline

• Reaching Definitions
• Available Expressions
• Liveness
Reaching Definitions

• Concept of definition and use
 – $a = x + y$
 – is a definition of a
 – is a use of x and y

• A definition reaches a use if
 – value written by definition
 – may be read by use
s = 0;
a = 4;
i = 0;
k == 0

b = 1;
b = 2;

i < n

s = s + a*b;
i = i + 1;

return s
Reaching Definitions and Constant Propagation

• Is a use of a variable a constant?
 – Check all reaching definitions
 – If all assign variable to same constant
 – Then use is in fact a constant

• Can replace variable with constant
Is a Constant in \(s = s + a \times b \)?

Yes!

On all reaching definitions \(a = 4 \)
Constant Propagation Transform

Yes!
On all reaching definitions
a = 4

s = 0;
a = 4;
i = 0;
k == 0

b = 1;
b = 2;
i < n

s = s + 4*b;
i = i + 1;

return s
Is b Constant in $s = s + a \cdot b$?

No!

One reaching definition with $b = 1$

One reaching definition with $b = 2$
Splitting preserves information lost at merges.

```plaintext
s = 0;
a = 4;
i = 0;
k == 0

b = 1;
b = 2;
i < n
s = s + a*b;
i = i + 1;
return s

s = 0;
a = 4;
i = 0;
k == 0

b = 1;
b = 2;
i < n
s = s + a*b;
i = i + 1;
return s
```
Splitting Preserves Information Lost At Merges

\[
\begin{align*}
 s &= 0; \\
 a &= 4; \\
 i &= 0; \\
 k &= 0
\end{align*}
\]

\[
\begin{align*}
 b &= 1; \\
 b &= 2; \\
 i &< n
\end{align*}
\]

\[
\begin{align*}
 s &= s + a \times b; \\
 i &= i + 1;
\end{align*}
\]

\[
\begin{align*}
 s &= 0; \\
 a &= 4; \\
 i &= 0; \\
 k &= 0
\end{align*}
\]

\[
\begin{align*}
 b &= 1; \\
 b &= 2; \\
 i &< n
\end{align*}
\]

\[
\begin{align*}
 s &= s + a \times 1; \\
 i &= i + 1;
\end{align*}
\]

\[
\begin{align*}
 s &= s + a \times 2; \\
 i &= i + 1;
\end{align*}
\]

\[
\begin{align*}
 \text{return } s
\end{align*}
\]

\[
\begin{align*}
 \text{return } s
\end{align*}
\]
Computing Reaching Definitions

- Compute with sets of definitions
 - represent sets using bit vectors
 - each definition has a position in bit vector
- At each basic block, compute
 - definitions that reach start of block
 - definitions that reach end of block
- Do computation by simulating execution of program until reach fixed point
1: s = 0;
2: a = 4;
3: i = 0;
4: b = 1;
5: b = 2;
6: s = s + a*b;
7: i = i + 1;
return s
Formalizing Analysis

- Each basic block has
 - **IN** - set of definitions that reach beginning of block
 - **OUT** - set of definitions that reach end of block
 - **GEN** - set of definitions generated in block
 - **KILL** - set of definitions killed in block
- \(\text{GEN}[s = s + a*b; i = i + 1;] = 0000011 \)
- \(\text{KILL}[s = s + a*b; i = i + 1;] = 1010000 \)
- Compiler scans each basic block to derive GEN and KILL sets
Dataflow Equations

- \(\text{IN}[b] = \text{OUT}[b1] \cup \ldots \cup \text{OUT}[bn] \)
 - where \(b1, \ldots, bn \) are predecessors of \(b \) in CFG
- \(\text{OUT}[b] = (\text{IN}[b] - \text{KILL}[b]) \cup \text{GEN}[b] \)
- \(\text{IN}[\text{entry}] = 00000000 \)
- Result: system of equations
Solving Equations

- Use fixed point algorithm
- Initialize with solution of $\text{OUT}[b] = 0000000$
- Repeatedly apply equations
 - $\text{IN}[b] = \text{OUT}[b1] \cup ... \cup \text{OUT}[bn]$
 - $\text{OUT}[b] = (\text{IN}[b] - \text{KILL}[b]) \cup \text{GEN}[b]$
- Until reach fixed point
- Until equation application has no further effect
- Use a worklist to track which equation applications may have a further effect
Reaching Definitions Algorithm

for all nodes n in N
 OUT[n] = emptyset; // OUT[n] = GEN[n];
IN[Entry] = emptyset;
OUT[Entry] = GEN[Entry];
Changed = N - { Entry }; // N = all nodes in graph

while (Changed != emptyset)
 choose a node n in Changed;
 Changed = Changed - { n };

 IN[n] = emptyset;
 for all nodes p in predecessors(n)
 IN[n] = IN[n] U OUT[p];

 OUT[n] = GEN[n] U (IN[n] - KILL[n]);

 if (OUT[n] changed)
 for all nodes s in successors(n)
 Changed = Changed U { s };
Questions

• Does the algorithm halt?
 – yes, because transfer function is monotonic
 – if increase IN, increase OUT
 – in limit, all bits are 1

• If bit is 0, does the corresponding definition ever reach basic block?

• If bit is 1, is does the corresponding definition always reach the basic block?
1: s = 0;
2: a = 4;
3: i = 0;
k == 0
4: b = 1;
5: b = 2;
6: s = s + a*b;
7: i = i + 1;
return s
Outline

- Reaching Definitions
- Available Expressions
- Liveness
Available Expressions

• An expression $x+y$ is available at a point p if
 – every path from the initial node to p must evaluate $x+y$ before reaching p,
 – and there are no assignments to x or y after the evaluation but before p.

• Available Expression information can be used to do global (across basic blocks) CSE

• If expression is available at use, no need to reevaluate it
Example: Available Expression

\[
\begin{align*}
a &= b + c \\
d &= e + f \\
f &= a + c \\
g &= a + c \\
b &= a + d \\
h &= c + f \\
j &= a + b + c + d
\end{align*}
\]
Is the Expression Available?

YES!

\[
\begin{align*}
 a &= b + c \\
 d &= e + f \\
 f &= a + c \\
 g &= a + c \\
 b &= a + d \\
 h &= c + f \\
 j &= a + b + c + d
\end{align*}
\]
Is the Expression Available?

YES!
Is the Expression Available?

NO!

\[
\begin{align*}
 a &= b + c \\
 d &= e + f \\
 f &= a + c \\
 g &= a + c \\
 b &= a + d \\
 h &= c + f \\
 j &= a + b + c + d
\end{align*}
\]
Is the Expression Available?

NO!

\[
\begin{align*}
a &= b + c \\
d &= e + f \\
f &= a + c
\end{align*}
\]

\[
\begin{align*}
g &= a + c \\
b &= a + d \\
h &= c + f
\end{align*}
\]

\[
\begin{align*}
j &= a + b + c + d
\end{align*}
\]
Is the Expression Available?

\[a = b + c \]
\[d = e + f \]
\[f = a + c \]

\[g = a + c \]

\[b = a + d \]
\[h = c + f \]

\[j = a + b + c + d \]

\textbf{NO!}
Is the Expression Available?

YES!

\[
\begin{align*}
 a &= b + c \\
 d &= e + f \\
 f &= a + c \\
 g &= a + c \\
 b &= a + d \\
 h &= c + f \\
 j &= a + b + c + d
\end{align*}
\]
Is the Expression Available?

YES!

\[a = b + c \]
\[d = e + f \]
\[f = a + c \]
\[g = a + c \]
\[b = a + d \]
\[h = c + f \]
\[j = a + b + c + d \]
Use of Available Expressions

\[
\begin{align*}
a &= b + c \\
d &= e + f \\
f &= a + c
\end{align*}
\]

\[
\begin{align*}
g &= a + c \\
b &= a + d \\
h &= c + f
\end{align*}
\]

\[
\begin{align*}
j &= a + b + c + d
\end{align*}
\]
Use of Available Expressions

\[
\begin{align*}
a &= b + c \\
d &= e + f \\
f &= a + c
\end{align*}
\]

\[
\begin{align*}
g &= a + c \\
b &= a + d \\
h &= c + f \\
j &= a + b + c + d
\end{align*}
\]
Use of Available Expressions

\[
\begin{align*}
 a &= b + c \\
 d &= e + f \\
 f &= a + c \\
 g &= a + c \\
 b &= a + d \\
 h &= c + f \\
 j &= a + b + c + d
\end{align*}
\]
Use of Available Expressions

\[
\begin{align*}
 a &= b + c \\
 d &= e + f \\
 f &= a + c \\
 g &= f \\
 b &= a + d \\
 h &= c + f \\
 j &= a + b + c + d
\end{align*}
\]
Use of Available Expressions

\[
\begin{align*}
 a &= b + c \\
 d &= e + f \\
 f &= a + c \\
 g &= f \\
 j &= a + b + c + d \\
 b &= a + d \\
 h &= c + f
\end{align*}
\]
Use of Available Expressions

\[a = b + c \]
\[d = e + f \]
\[f = a + c \]

\[g = f \]

\[j = a + c + b + d \]

\[b = a + d \]
\[h = c + f \]
Use of Available Expressions

\[a = b + c \]
\[d = e + f \]
\[f = a + c \]

\[g = f \]
\[j = f + b + d \]
\[b = a + d \]
\[h = c + f \]
Use of Available Expressions

\[a = b + c \]
\[d = e + f \]
\[f = a + c \]
\[g = f \]
\[b = a + d \]
\[h = c + f \]
\[j = f + b + d \]
Computing Available Expressions

- Represent sets of expressions using bit vectors
- Each expression corresponds to a bit
- Run dataflow algorithm similar to reaching definitions
- Big difference
 - definition reaches a basic block if it comes from ANY predecessor in CFG
 - expression is available at a basic block only if it is available from ALL predecessors in CFG
Expressions
1: x+y
2: i<n
3: i+c
4: x==0

0000
a = x+y;
x == 0

1001
x = z;
b = x+y;

1000
i = x+y;

1000
i = x+y;

1000
i < n

1100
c = x+y;
i = i+c;

1100
d = x+y
Global CSE Transform

Expressions
1: x+y
2: i<n
3: i+c
4: x==0

must use same temp for CSE in all blocks
Global CSE Transform

Expressions
1: x+y
2: i<n
3: i+c
4: x==0

must use same temp for CSE in all blocks
Formalizing Analysis

- Each basic block has:
 - IN - set of expressions available at start of block
 - OUT - set of expressions available at end of block
 - GEN - set of expressions computed in block
 - KILL - set of expressions killed in in block

- GEN\[x = z; b = x+y\] = 1000
- KILL\[x = z; b = x+y\] = 1001
- Compiler scans each basic block to derive GEN and KILL sets
Dataflow Equations

- \(\text{IN}[b] = \text{OUT}[b_1] \cap \ldots \cap \text{OUT}[b_n]\)
 - where \(b_1, \ldots, b_n\) are predecessors of \(b\) in CFG
- \(\text{OUT}[b] = (\text{IN}[b] - \text{KILL}[b]) \cup \text{GEN}[b]\)
- \(\text{IN}[\text{entry}] = 0000\)
- Result: system of equations
Solving Equations

- Use fixed point algorithm
- \(\text{IN[entry]} = 0000 \)
- Initialize \(\text{OUT[b]} = 1111 \)
- Repeatedly apply equations
 - \(\text{IN[b]} = \text{OUT[b1]} \cap \ldots \cap \text{OUT[bn]} \)
 - \(\text{OUT[b]} = (\text{IN[b]} - \text{KILL[b]}) \cup \text{GEN[b]} \)
- Use a worklist algorithm to reach fixed point
Available Expressions Algorithm

for all nodes n in N
 $OUT[n] = E$; // $OUT[n] = E - KILL[n]$;
$IN[Entry] = emptyset$;
$OUT[Entry] = GEN[Entry]$;
$Changed = N - \{ Entry \}$; // $N = all$ nodes in graph

while ($Changed \neq emptyset$)
 choose a node n in $Changed$;
 $Changed = Changed - \{ n \}$;

 $IN[n] = E$; // E is set of all expressions
 for all nodes p in predecessors(n)
 $IN[n] = IN[n] \cap OUT[p]$;

 $OUT[n] = GEN[n] \cup (IN[n] - KILL[n])$;

 if ($OUT[n]$ changed)
 for all nodes s in successors(n)
 $Changed = Changed \cup \{ s \}$;
Questions

• Does algorithm always halt?

• If expression is available in some execution, is it always marked as available in analysis?

• If expression is not available in some execution, can it be marked as available in analysis?
Duality In Two Algorithms

- Reaching definitions
 - Confluence operation is set union
 - OUT[b] initialized to empty set
- Available expressions
 - Confluence operation is set intersection
 - OUT[b] initialized to set of available expressions
- General framework for dataflow algorithms.
- Build parameterized dataflow analyzer once, use for all dataflow problems
Outline

• Reaching Definitions
• Available Expressions
• Liveness
Liveness Analysis

- A variable v is live at point p if
 - v is used along some path starting at p, and
 - no definition of v along the path before the use.

- When is a variable v dead at point p?
 - No use of v on any path from p to exit node, or
 - If all paths from p redefine v before using v.

What Use is Liveness Information?

- Register allocation.
 - If a variable is dead, can reassign its register

- Dead code elimination.
 - Eliminate assignments to variables not read later.
 - But must not eliminate last assignment to variable (such as instance variable) visible outside CFG.
 - Can eliminate other dead assignments.
 - Handle by making all externally visible variables live on exit from CFG
Conceptual Idea of Analysis

- Simulate execution
- But start from exit and go backwards in CFG
- Compute liveness information from end to beginning of basic blocks
Liveness Example

- Assume a,b,c visible outside method
- So are live on exit
- Assume x,y,z,t not visible
- Represent Liveness Using Bit Vector
 - order is abcxyzt

\[
\begin{align*}
a &= x+y; \\
t &= a; \\
c &= a+x; \\
x &= 0
\end{align*}
\]

\[
\begin{align*}
b &= t+z; \\
c &= y+1;
\end{align*}
\]
Dead Code Elimination

- Assume a,b,c visible outside method
- So are live on exit
- Assume x,y,z,t not visible
- Represent Liveness Using Bit Vector
 - order is $abcxyzt$
Formalizing Analysis

• Each basic block has
 – IN - set of variables live at start of block
 – OUT - set of variables live at end of block
 – USE - set of variables with upwards exposed uses in block
 – DEF - set of variables defined in block

• \(\text{USE}[x = z; x = x+1;] = \{ z \} \) (x not in USE)
• \(\text{DEF}[x = z; x = x+1; y = 1;] = \{ x, y \} \)

• Compiler scans each basic block to derive USE and DEF sets
Algorithm

for all nodes n in N - { Exit }
 IN[n] = emptyset;
OUT[Exit] = emptyset;
IN[Exit] = use[Exit];
Changed = N - { Exit };

while (Changed != emptyset)
 choose a node n in Changed;
 Changed = Changed - { n };

 OUT[n] = emptyset;
 for all nodes s in successors(n)
 OUT[n] = OUT[n] U IN[p];

 IN[n] = use[n] U (out[n] - def[n]);

 if (IN[n] changed)
 for all nodes p in predecessors(n)
 Changed = Changed U { p };
Similar to Other Dataflow Algorithms

- Backwards analysis, not forwards
- Still have transfer functions
- Still have confluence operators
- Can generalize framework to work for both forwards and backwards analyses
Comparison

Reaching Definitions

for all nodes n in N
 OUT[n] = emptyset;
 IN[Entry] = emptyset;
 OUT[Entry] = GEN[Entry];
 Changed = N - { Entry };

while (Changed != emptyset)
 choose a node n in Changed;
 Changed = Changed - { n };

 IN[n] = emptyset;
 for all nodes p in predecessors(n)
 IN[n] = IN[n] U OUT[p];

 OUT[n] = GEN[n] U (IN[n] - KILL[n]);

 if (OUT[n] changed)
 for all nodes s in successors(n)
 Changed = Changed U { s };
Comparison

Reaching Definitions

<table>
<thead>
<tr>
<th>for all nodes n in N</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT[n] = emptyset;</td>
</tr>
<tr>
<td>IN[Entry] = emptyset;</td>
</tr>
<tr>
<td>OUT[Entry] = GEN[Entry];</td>
</tr>
<tr>
<td>Changed = N - { Entry };</td>
</tr>
</tbody>
</table>

while (Changed != emptyset)
 choose a node n in Changed;
 Changed = Changed - { n };

<table>
<thead>
<tr>
<th>IN[n] = emptyset;</th>
</tr>
</thead>
<tbody>
<tr>
<td>for all nodes p in predecessors(n)</td>
</tr>
<tr>
<td>IN[n] = IN[n] U OUT[p];</td>
</tr>
</tbody>
</table>

| OUT[n] = GEN[n] U (IN[n] - KILL[n]); |

if (OUT[n] changed)
 for all nodes s in successors(n)
 Changed = Changed U { s }; |

Available Expressions

<table>
<thead>
<tr>
<th>for all nodes n in N</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT[n] = E;</td>
</tr>
<tr>
<td>IN[Entry] = emptyset;</td>
</tr>
<tr>
<td>OUT[Entry] = GEN[Entry];</td>
</tr>
<tr>
<td>Changed = N - { Entry };</td>
</tr>
</tbody>
</table>

while (Changed != emptyset)
 choose a node n in Changed;
 Changed = Changed - { n };

<table>
<thead>
<tr>
<th>IN[n] = E;</th>
</tr>
</thead>
<tbody>
<tr>
<td>for all nodes p in predecessors(n)</td>
</tr>
<tr>
<td>IN[n] = IN[n] \cap OUT[p];</td>
</tr>
</tbody>
</table>

| OUT[n] = GEN[n] U (IN[n] - KILL[n]); |

if (OUT[n] changed)
 for all nodes s in successors(n)
 Changed = Changed U { s }; |
Comparison

Reaching Definitions

<table>
<thead>
<tr>
<th>Operation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT<sub>n</sub></td>
<td>emptyset</td>
</tr>
<tr>
<td>IN<sub>Entry</sub></td>
<td>emptyset</td>
</tr>
<tr>
<td>OUT<sub>Entry</sub></td>
<td>GEN[Entry]</td>
</tr>
<tr>
<td>Changed</td>
<td>N - { Entry }</td>
</tr>
</tbody>
</table>

while (Changed != emptyset)

choose a node n in Changed;

Changed = Changed - { n };

IN_n = emptyset;

for all nodes p in predecessors(n)

IN_n = **IN**_n U **OUT**_p;

OUT_n = GEN[n] U (**IN**[n] - **KILL**[n]);

if (**OUT**[n] changed)

for all nodes s in successors(n)

Changed = Changed U { s };

Liveness

<table>
<thead>
<tr>
<th>Operation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN<sub>n</sub></td>
<td>emptyset</td>
</tr>
<tr>
<td>OUT<sub>Exit</sub></td>
<td>emptyset</td>
</tr>
<tr>
<td>IN<sub>Exit</sub></td>
<td>use[Exit]</td>
</tr>
<tr>
<td>Changed</td>
<td>N - { Exit }</td>
</tr>
</tbody>
</table>

while (Changed != emptyset)

choose a node n in Changed;

Changed = Changed - { n };

OUT_n = emptyset;

for all nodes s in successors(n)

OUT_n = **OUT**_n U **IN**_p;

IN_n = use[n] U (**out**[n] - **def**[n]);

if (**IN**[n] changed)

for all nodes p in predecessors(n)

Changed = Changed U { p };}
Analysis Information Inside Basic Blocks

- One detail:
 - Given dataflow information at IN and OUT of node
 - Also need to compute information at each statement of basic block
 - Simple propagation algorithm usually works fine
 - Can be viewed as restricted case of dataflow analysis
Pessimistic vs. Optimistic Analyses

- Available expressions is optimistic (for common sub-expression elimination)
 - Assume expressions are available at start of analysis
 - Analysis eliminates all that are not available
 - Cannot stop analysis early and use current result
- Live variables is pessimistic (for dead code elimination)
 - Assume all variables are live at start of analysis
 - Analysis finds variables that are dead
 - Can stop analysis early and use current result
- Dataflow setup same for both analyses
- Optimism/pessimism depends on intended use
Summary

• Basic Blocks and Basic Block Optimizations
 – Copy and constant propagation
 – Common sub-expression elimination
 – Dead code elimination

• Dataflow Analysis
 – Control flow graph
 – IN[b], OUT[b], transfer functions, join points

• Paired analyses and transformations
 – Reaching definitions/constant propagation
 – Available expressions/common sub-expression elimination
 – Liveness analysis/Dead code elimination

• Stacked analysis and transformations work together