MIT 6.035
Foundations of Dataflow Analysis

Martin Rinard
Laboratory for Computer Science
Massachusetts Institute of Technology

Dataflow Analysis

« Compile-Time Reasoning About
* Run-Time Values of Variables or Expressions

At Different Program Points

— Which assignment statements produced value of
variable at this point?

— Which variables contain values that are no longer
used after this program point?

— What is the range of possible values of variable at
this program point?

Program Representation

 Control Flow Graph
— Nodes N — statements of program

— Edges E — flow of control
 pred(n) = set of all predecessors of n
« succ(n) = set of all successors of n

— Start node n,
— Set of final nodes Ny,

Program Points

One program point before each node

One program point after each node

Join point — point with multiple predecessors
Split point — point with multiple successors

Basic ldea

 Information about program represented using
values from algebraic structure called lattice

 Analysis produces lattice value for each
program point
» Two flavors of analysis

— Forward dataflow analysis
— Backward dataflow analysis

Forward Dataflow Analysis

 Analysis propagates values forward through control
flow graph with flow of control

— Each node has a transfer function f
* [nput — value at program point before node
 Output — new value at program point after node

— Values flow from program points after predecessor
nodes to program points before successor nodes

— At join points, values are combined using a merge
function

« Canonical Example: Reaching Definitions

Backward Dataflow Analysis

 Analysis propagates values backward through control
flow graph against flow of control

— Each node has a transfer function f
* [nput — value at program point after node
 Output — new value at program point before node

— Values flow from program points before successor
nodes to program points after predecessor nodes

— At split points, values are combined using a merge
function

— Canonical Example: Live Variables

Partial Orders

e SetP
o Partial order < such that vx,y,zeP
— X< X (reflexive)

—X<yandy<ximpliesx=y (asymmetric)
—Xx<yandy<zimplies x <z (transitive)

» Can use partial order to define
— Upper and lower bounds

— Least upper bound
— Greatest lower bound

Upper Bounds

e IfS c Pthen

— XeP Is an upper bound of S If VyeS. y <X

— XeP Is the least upper bound of S If
X IS an upper bound of S, and
« x <y for all upper bounds y of S
— v - Join, least upper bound, lub, supremum, sup
* v S IS the least upper bound of S
* X v Y IS the least upper bound of {x,y}

_ower Bounds

e IfS c Pthen

— XePIs a lower bound of S if VyeS. x <y

— XeP Is the greatest lower bound of S If
* X Is a lower bound of S, and
 y < x for all lower bounds y of S

— A - meet, greatest lower bound, glb, infimum, inf
* A S Is the greatest lower bound of S
* X AY IS the greatest lower bound of {Xx,y}

Covering

o X<y IfX<yand xzy

« X IS covered by Vy (y covers X) if
— X <Y, and
—X<z<yimpliesx=z

» Conceptually, y covers x If there are no
elements between x and y

Example

- P={000, 001, 010,011, 100, 101, 110, 111}
(standard boolean lattice, also called hypercube)
o XYy If (X bitwise and y) = X

Hasse Diagram
111

/I\ * Ify covers X
011 110

 Line fromy to X

101
>‘< » y above X in diagram

00 100

2

000

|_attices

o IfXx Ayandx vy existforall x,yeP,
then P is a lattice.

e If AS and vS exist forall S < P,
then P Is a complete lattice.

 All finite lattices are complete

|_attices

If X Ay and x vy exist for all x,yeP,
then P is a lattice.

If AS and vS exist forall S < P,
then P Is a complete lattice.

All finite lattices are complete

Example of a lattice that is not complete

— Integers |

— Forany x, yel, x vy =max(x,y), X Ay =min(x,y)
— But v I and A | do not exist

— | U {+o0,—0 } IS @ complete lattice

Top and Bottom

» Greatest element of P (if it exists) Is top
 Least element of P (if it exists) Is bottom (L)

Connection Between <, A, and v

» The following 3 properties are equivalent:
— X<y
- Xvy=y
— XAY=X
* Will prove:
— Xx<yimpliesxvy=yand X Ay =X
— Xvy=yimpliesx <y
— XAy=ximpliesx <y
* Then by transitivity, can obtain
— Xxvy=yimpliesx Ay =X
— XAy=ximpliessxvy=y

Connecting Lemma Proofs

 Proofof x <y impliesxvy=y
— X <y Implies y Is an upper bound of {x,y}.
— Any upper bound z of {x,y} must satisfy y < z.
— So y Is least upper bound of {x,y}and xvy=y
e Proof of x <y Iimplies X Ay =X
— X <y Implies x Is a lower bound of {x,y}.
— Any lower bound z of {x,y} must satisfy z < x.
— So x Is greatest lower bound of {X,y} and X A y =X

Connecting Lemma Proofs

 Proofof x vy=yimpliesx <y

— Yy Is an upper bound of {Xx,y} implies x <y
 Proofof x Ay=x1Impliesx <y

— X Is a lower bound of {X,y} implies x <y

Lattices as Algebraic Structures

 Have defined v and A In terms of <

o WIll now define <In terms of v and A

— Start with v and A as arbitrary algebraic operations
that satisfy associative, commutative, idempotence,
and absorption laws

— Will define < using v and A
— Will show that < Is a partial order

* Intuitive concept of v and A as information
combination operators (or, and)

Algebraic Properties of Lattices

Assume arbitrary operations v and A such that
—(Xvy)vz=xv(yvz) (associativity of v)
—(XAyY)AzZ=XA(yAaz) (associativity of A)

—XVY=YVX
—XAY=YAX
— XV X=X
— XAX=X
— XV (XAY)=X
—XAXVY)=X

(commutativity of v)
(commutativity of A)
(idempotence of v)
(idempotence of A)
(absorption of v over A)
(absorption of A over v)

Connection Between A and v

e Xvy=yifandonly if x Ay=x

 Proofof x vy=yimpliesx=xAYy
X=XAXVY) (by absorption)

=XAY (by assumption)

 Proofof x Ay=x1mpliesy=xvy
V=V V(Y AX) (by absorption)

=yv(XAY) (by commutativity)

=y VX (by assumption)

=XVYy (by commutativity)

Properties of <

* Definex<yifxvy=y
 Proof of transitive property. Must show that
Xvy=yandyvz=zimpliesxvz=z

XvZ=Xv(yviz(
=(Xvy)vz(

=y vz
=

(
(

Oy assumption)
py associativity)
Dy assumption)

Oy assumption)

Properties of <

» Proof of asymmetry property. Must show that
Xvy=yandyvx=ximpliesx=y
X=yvX (byassumption)
=xvy (by commutativity)
=y (by assumption)
* Proof of reflexivity property. Must show that
XV X=X
XV X=X (by idempotence)

Properties of <

» Induced operation < agrees with original
definitions of v and A, I.e.,
—XVvYy=sup{x, y}

— XAy =Inf{X, vy}

Proof of X vy =sup {X, y}

» Consider any upper bound u for x and y.

 Glvenx v u=uandy v u=u, mustshow
Xvysule,(Xvyvu=u

u=XvuUu
=Xv(yvu)
=(xvy)vu

(
(
(

Oy assumption)
Oy assumption)

Dy associativity)

Proof of X Ay = Inf {X, y}

 Consider any lower bound | for x and .

 Givenx A l=landy A | =1, must show
| <x Ay le,(XAy)Al=l
| =X Al (by assumption)
=XA(yal) (by assumption)

=(XAY) Al (by associativity)

Chalns

« AsetSisachainif Yx,yeS.y<xorx<y

P has no infinite chains if every chain in P Is
finite

» P satisfies the ascending chain condition if

for all sequences x, < X, < ...there exists n
such that x, = x.,, = ...

Application to Dataflow Analysis

 Dataflow information will be lattice values
— Transfer functions operate on lattice values

— Solution algorithm will generate increasing
sequence of values at each program point

— Ascending chain condition will ensure termination

 Will use v to combine values at control-flow
join points

Transfer Functions

e Transfer function f: P—P for each node In
control flow graph

 f models effect of the node on the program
Information

Transfer Functions

Each dataflow analysis problem has a set F of
transfer functions f: P—»P
— ldentity function ieF

— F must be closed under composition:
Vf,geF. the function h = Ax.f(g(x)) €F

— Each f €F must be monotone:
X <y implies f(x) < f(y)

— Sometimes all f eF are distributive:
f(x vy) =1(x) v f(y)

— Distributivity implies monotonicity

Distributivity Implies Monotonicity

 Proof of distributivity implies monotonicity
e Assume f(x v y) = f(x) v f(y)
e Must show: x vy =y implies f(x) v f(y) = f(y)
fly) =f(x vy) (by assumption)
=f(x) v f(y) (by distributivity)

Putting Pieces Together

» Forward Dataflow Analysis Framework

« Simulates execution of program forward with
flow of control

Forward Dataflow Analysis

 Simulates execution of program forward with
flow of control
 For each node n, have
— In, — value at program point before n
— out, — value at program point after n
— f_ —transfer function for n (given in,, computes out,)

» Require that solution satisfy
— Vn. out, = f (in.)
— Vn=#n, in,=v {out,.minpred(n) }
—Ing=1
— Where | summarizes information at start of program

Dataflow Equations

« Compiler processes program to obtain a set of
dataflow equations

out, ;=T (in)
In, :=v {out, .minpred(n) }
» Conceptually separates analysis problem from
program

Worklist Algorithm for Solving
Forward Dataflow Equations

for each ndoout, ;=1 (L)
N, :=I; out:= T 4(l)
worklist := N -{ ny }
while worklist = & do
remove a node n from worklist
In, :=v {out, .minpred(n) }
out, ;=T (in,)
If out, changed then
worklist := worklist U succ(n)

Correctness Argument

Why result satisfies dataflow equations
Whenever process a node n, set out, :=f.(in)
Algorithm ensures that out, = f (in.)

Whenever out,, changes, put succ(m) on worklist.
Consider any node n € succ(m). It will eventually come
off worklist and algorithm will set

In, :=v {out, .minpred(n) }
to ensure that in, = v { out,, . m in pred(n) }
So final solution will satisfy dataflow equations

Termination Argument

» Why does algorithm terminate?

 Sequence of values taken on by in or out Is a
chain. If values stop increasing, worklist
empties and algorithm terminates.

» |f lattice has ascending chain property,
algorithm terminates

— Algorithm terminates for finite lattices

— For lattices without ascending chain property, use
widening operator

Widening Operators

 Detect lattice values that may be part of infinitely
ascending chain
« Artificially raise value to least upper bound of chain

« Example:
— Lattice is set of all subsets of integers
— Could be used to collect possible values taken on by
variable during execution of program

— Widening operator might raise all sets of size n or
greater to TOP (likely to be useful for loops)

Reaching Definitions

P = powerset of set of all definitions in program (all
subsets of set of definitions in program)

v = U (order is ©)

1=

| =in,=1

F = all functions f of the form f(x) = a U (x-b)

— b 1s set of definitions that node kills
— a s set of definitions that node generates

General pattern for many transfer functions
— f(x) = GEN U (x-KILL)

Does Reaching Definitions

Framework Satisfy Properties?

o satisfies conditions for <
—Xcvyandy c zimplies x < z (transitivity)
—Xcyandy c x implies y = x (asymmetry)
— X < X (Idempotence)
» F satisfies transfer function conditions
— AX.D U (X-) = Ax.xeF (identity)
— Will show f(x U y) = f(x) U f(y) (distributivity)

fx) Ufly)=(@v (x-b))u@uw(y-Db))
—au(X—-bu(y-b)=au((xuwuy)-Db)
=f(xwy)

Does Reaching Definitions

Framework Satisfy Properties?

» \What about composition?
— Given f,(x) = a; U (X-b,) and f,(x) = a, U (x-b,)
— Must show f,(f,(Xx)) can be expressed as a U (X - b)
f,(f,(x)) = a; U ((a, L (x-b,)) - by)
=3, U ((a; - by) v ((x-by) - by))

= (a; Y (8, - by)) W ((x-by) - by))
= (ay Y (@, - by)) L (x-(b, U by))

—Leta=(a, v (a,-by)andb =D, ub,
— Then f,(f,(xX)) =au (X —Db)

General Result

All GEN/KILL transfer function frameworks
satisfy
— ldentity
— Distributivity
— Composition
Properties

Avallable Expressions

P = powerset of set of all expressions in
program (all subsets of set of expressions)

v = (order is D)

1 =P

| =in,=<

F = all functions f of the form f(x) = a U (x-b)

— b is set of expressions that node kills
— a IS set of expressions that node generates

Another GEN/KILL analysis

Concept of Conservatism

 Reaching definitions use w as join

— Optimizations must take into account all definitions
that reach along ANY path

 Avalilable expressions use M as join

— Optimization requires expression to reach along
ALL paths
« Optimizations must conservatively take all
possible executions into account. Structure of
analysis varies according to way analysis used.

Backward Dataflow Analysis

« Simulates execution of program backward against
the flow of control
* For each node n, have
— In, — value at program point before n
— out, — value at program point after n
— f_ —transfer function for n (given out,, computes in.)

« Require that solution satisfies
— Vn. in, =1 (out,)
—Vn ¢ Ng.. out, = v {In_ . minsucc(n) }
—Vn e Ng,=out, =0
— Where O summarizes information at end of program

Worklist Algorithm for Solving
Backward Dataflow Equations

foreachndoin, :=f (L)
for each n € N4, do out, := O; In, =1 (O)
worklist := N - Ng,
while worklist # @ do

remove a node n from worklist

out, := v { In . minsucc(n) }

In, =T (out,)

If In, changed then

worklist := worklist U pred(n)

Live Variables

» P = powerset of set of all variables in program
(all subsets of set of variables in program)

e v =U (orderis <)

e l=0

e 0=

« F = all functions f of the form f(x) = a U (x-b)

— b 1s set of variables that node kills
— a Is set of variables that node reads

Meaning of Dataflow Results

» Concept of program state s for control-flow graphs

» Program point n where execution located
(n 1s node that will execute next)

 Values of variables in program
« Each execution generates a trajectory of states:
— S0;S1;---:8,.Wwhere each s; eST
— Si, generated from s; by executing basic block to
» Update variable values
 Obtain new program point n

Relating States to Analysis Result

» Meaning of analysis results Is given by an
abstraction function AF:ST—P

 Correctness condition: require that for all states s
AF(S) <In,
where n Is the next statement to execute in state s

Sign Analysis Example

 Sign analysis - compute sign of each variable v
« Base Lattice: P = flat lattice on {-,0,+}

BOT
e Actual lattice records a value for each variable
— Example element: [a—+, b—0, c—-]

Interpretation of Lattice Values

 |f value of v In lattice Is:
— BOT: no information about sign of v
— -: variable v Is negative
— 0: variablevis 0
— +: variable v is positive
— TOP: v may be positive or negative

e \What Is abstraction function AF?

N AF([X]_:“-:XH]) - [Sign(xl)a AR Sign(Xn)]
— Wheresign(x) =01fx=0,+1fx>0,-1fx<0

Operation ® on Lattice

® | BOT | - 0 + | TOP
BOT | BOT |BOT| 0 |BOT | BOT

- | BOT | + 0 - | TOP

0 0 0 0 0 0

+ | BOT | - 0 + | TOP
TOP | BOT | TOP| O | TOP | TOP

Transfer Functions

* |fnoftheformv=c
— f (x) = x[v—>+] if ¢ is positive
—f.(X) =x[v—>0] ifcisO
— f.(X) = x][v—-] If c Is negative
o If nof the form v, = v,*v,
— 1,(X) = X[V =>X[V,] @ X[vs]]
« | =TOP
(uninitialized variables may have any sign)

Example

a=1
[a—)+/\—)+]

b=-1 b=1

[a—>+, b—>-] [a—>+, b—>+]

[a—+, b—>TOP]
c=a*b
[a—>+, b>TOP,c ->TOP]

Imprecision In Example

Abstraction Imprecision:
[a—>1] abstracted as [a—>+] a=1

[a—>+/\—>+]

b=-1 b=1

[a—>+, b—>-] [a—>+, b—>+]

[a—>+, b—>TOP]

Control Flow Imprecision: C=a*b
[b—TOP] summarizes results of all executions. In any
execution state s, AF(s)[b]=TOP

General Sources of Imprecision

 Abstraction Imprecision
— Concrete values (integers) abstracted as lattice values (-,0, and +)
— Lattice values less precise than execution values
— Abstraction function throws away information

 Control Flow Imprecision
— One lattice value for all possible control flow paths

— Analysis result has a single lattice value to summarize results of
multiple concrete executions

— Join operation v moves up in lattice to combine values from
different execution paths

— Typically if x <y, then x Is more precise than y

Why Have Imprecision

» Make analysis tractable

« Unbounded sets of values in execution
— Typically abstracted by finite set of lattice values

 EXxecution may visit unbounded set of states
— Abstracted by computing joins of different paths

Abstraction Function
« AF(s)[v] =sign of v
— AF(n,[a—>5, b—0, c—>-2]) = [a—>+, b—0, c—>-]
 Establishes meaning of the analysis results

— If analysis says variable has a given sign
— Always has that sign in actual execution

 Correctness condition:
—V v. AF(s)[V] <in [v] (n Is node for s)
— Reflects possibility of imprecision

Abstraction Function Soundness

« Will show
vV v. AF(s)[v] £ In [v] (n Is node for s)

by Induction on length of computation that
produced s

« Base case:
— V V. In4[v] = TOP, which implies that
— V V. AF(S)[v] £ TOP

Induction Step

e Assume V v. AF(s)[v] < in [v] for computations of length k
* Prove for computations of length k+1
* Proof:
— Given s (state), n (node to execute next), and in,
— Find p (the node that just executed), s,(the previous state),
and In,
— By induction hypothesis V v. AF(s,)[v] < In [V]
— Case analysis on form of n
* If n of the form v = c, then
—s[v] = c and out, [v] = sign(c), so
AF(s)[v] = sign(c) = out, [v] < In [V]
— It x2v, s[x] = s, [x] and out, [x] = In [X], sO
AF(S)[X] = AF(sp)[X] < iny[X] = out, [X] < in,[X]
« Similar reasoning if n of the form v, = v,*v,

Augmented Execution States

 Abstraction functions for some analyses require
augmented execution states

— Reaching definitions: states are augmented with
definition that created each value

— Avalilable expressions: states are augmented with
expression for each value

Meet Over Paths Solution

What solution would be ideal for a forward dataflow
analysis problem?

Consider a path p =ng, ny, ..., n,, N t0 a node n
(note that for all 1 n; € pred(n;,,))

The solution must take this path into account:
fo (L) = (Fa(Trea (- - £ (Fro(L))) < iny
So the solution must have the property that
v{f, (1) . pis apathton} <in,
and 1deally
v{f, (L) .pis apathton} =in,

Soundness Proof of Analysis
Algorithm

* Property to prove:
For all paths pton, f, (L) <in
 Proof Is by induction on length of p
— Uses monotonicity of transfer functions
— Uses following lemma
 Lemma:
Worklist algorithm produces a solution such that
f (in)) = out,
If n € pred(m) then out, <in_,

Proof

» Base case: p Is of length 1
— Thenp =nyand f,(L) = L =1In,
* Induction step:

— Assume theorem for all paths of length k
— Show for an arbitrary path p of length k+1

Induction Step Proof

* pP=ng, ..., N, N
e Must show f,(f,_,(...f(F (L)) ...)) <Ing
— By induction (f,_;(...f{(fo(L)) ...)) < In,
— Apply f, to both sides, by monotonicity we get
1:k(fk-1(° : °fn1(fn0(J—)))) = 1:k(innk)
— By lemma, f,(in.,) = out,,
— By lemma, out,, <In,
— By transitivity, f (f_,(...f(fo(L1)) ...)) <In,

Distributivity

o Distributivity preserves precision

o |If framework is distributive, then worklist
algorithm produces the meet over paths solution

— For all n:
vif, (L) .pis apathton} =in,

Lack of Distributivity Example

e Constant Calculator
 Flat Lattice on Integers

e Actual lattice records a value for each variable
— Example element: [a—3, b—2, c—>b5]

Transfer Functions

e Ifnoftheformv=c
— f.(X) = X[v—cC]
o If n of the form v, = v,+v,
— 1,(X) = X[v;=>X[v,] + X[V3]]
 Lack of distributivity

— Consider transfer functionfforc=a+ b
— f([a—>3, b—2]) v f([a—>2, b—3]) = [a>TOP, b—>TOP, c—>5]

— f([a—>3, b—>2]v[a—>2, b—3]) = f([a>TOP, b—>TOP]) =
[a—>TOP, b—>TOP, c>TOP]

Lack of Distributivity Anomaly
K////\\\\

a=2 a=3
b=23 b=2
[a—>2, b—3] [a—3, b—2]

a—>TOP, b—>TOP L .
[a— =] A Lack of Distributivity Imprecision:
¢=a™D [aTOP, b—>TOP, c—>5] more precise
[a—>TOP, b—>TOP, ¢ > TOP]

What Is the meet over all paths solution?

How to Make Analysis Distributive

« Keep combinations of values on different paths

T

a=2 a=3
b=3 b=2
{[a—>2, b—3]} {[a—3, b—2]}

{[a—2, b—3], [a—>3, b—2]}
c=atb

{[a—>2, b—3,c—>5], [2—3, b—>2,c—>5]}

|Ssues

 Basically simulating all combinations of values
In all executions

— Exponential blowup
— Nontermination because of infinite ascending chains

e Nontermination solution

— Use widening operator to eliminate blowup
(can make it work at granularity of variables)

— Loses precision in many cases

Multiple Fixed Points

 Dataflow analysis generates least fixed point
* May be multiple fixed points
 Available expressions example

a=X+y a=X+y

Summary

» Formal dataflow analysis framework
— Lattices, partial orders
— Transfer functions, joins and splits
— Dataflow equations and fixed point solutions

 Connection with program
— Abstraction function AF: S —»> P
— For any state s and program point n, AF(S) <iIn_
— Meet over all paths solutions, distributivity

