MIT 6.035
Foundations of Dataflow Analysis

Martin Rinard
Laboratory for Computer Science
Massachusetts Institute of Technology
Dataflow Analysis

• Compile-Time Reasoning About
• Run-Time Values of Variables or Expressions
• At Different Program Points
 – Which assignment statements produced value of variable at this point?
 – Which variables contain values that are no longer used after this program point?
 – What is the range of possible values of variable at this program point?
Program Representation

• Control Flow Graph
 – Nodes N – statements of program
 – Edges E – flow of control
 • pred(n) = set of all predecessors of n
 • succ(n) = set of all successors of n
 – Start node n_0
 – Set of final nodes N_{final}
Program Points

• One program point before each node
• One program point after each node
• Join point – point with multiple predecessors
• Split point – point with multiple successors
Basic Idea

- Information about program represented using values from algebraic structure called lattice
- Analysis produces lattice value for each program point
- Two flavors of analysis
 - Forward dataflow analysis
 - Backward dataflow analysis
Forward Dataflow Analysis

- Analysis propagates values forward through control flow graph with flow of control
 - Each node has a transfer function f
 - Input – value at program point before node
 - Output – new value at program point after node
 - Values flow from program points after predecessor nodes to program points before successor nodes
 - At join points, values are combined using a merge function
- Canonical Example: Reaching Definitions
Backward Dataflow Analysis

- Analysis propagates values backward through control flow graph against flow of control
 - Each node has a transfer function f
 - Input – value at program point after node
 - Output – new value at program point before node
 - Values flow from program points before successor nodes to program points after predecessor nodes
 - At split points, values are combined using a merge function
- Canonical Example: Live Variables
Partial Orders

• Set P

• Partial order \leq such that $\forall x, y, z \in P$
 - $x \leq x$ (reflexive)
 - $x \leq y$ and $y \leq x$ implies $x = y$ (asymmetric)
 - $x \leq y$ and $y \leq z$ implies $x \leq z$ (transitive)

• Can use partial order to define
 - Upper and lower bounds
 - Least upper bound
 - Greatest lower bound
Upper Bounds

- If $S \subseteq P$ then
 - $x \in P$ is an upper bound of S if $\forall y \in S. \ y \leq x$
 - $x \in P$ is the least upper bound of S if
 - x is an upper bound of S, and
 - $x \leq y$ for all upper bounds y of S
 - \lor - join, least upper bound, lub, supremum, sup
 - $\lor S$ is the least upper bound of S
 - $x \lor y$ is the least upper bound of $\{x, y\}$
Lower Bounds

• If \(S \subseteq P \) then
 - \(x \in P \) is a lower bound of \(S \) if \(\forall y \in S. \ x \leq y \)
 - \(x \in P \) is the greatest lower bound of \(S \) if
 • \(x \) is a lower bound of \(S \), and
 • \(y \leq x \) for all lower bounds \(y \) of \(S \)
 - \(\land \) - meet, greatest lower bound, glb, infimum, inf
 • \(\land S \) is the greatest lower bound of \(S \)
 • \(x \land y \) is the greatest lower bound of \{x, y\}
Covering

- $x < y$ if $x \leq y$ and $x \neq y$
- x is covered by y (y covers x) if
 - $x < y$, and
 - $x \leq z < y$ implies $x = z$
- Conceptually, y covers x if there are no elements between x and y
Example

- \(P = \{000, 001, 010, 011, 100, 101, 110, 111\} \)
 (standard boolean lattice, also called hypercube)
- \(x \leq y \) if \((x \text{ bitwise and } y) = x\)

Hasse Diagram

- If \(y \) covers \(x \)
 - Line from \(y \) to \(x \)
 - \(y \) above \(x \) in diagram
Lattices

• If $x \wedge y$ and $x \vee y$ exist for all $x, y \in P$, then P is a lattice.
• If $\wedge S$ and $\vee S$ exist for all $S \subseteq P$, then P is a complete lattice.
• All finite lattices are complete.
Lattices

• If $x \land y$ and $x \lor y$ exist for all $x, y \in P$, then P is a lattice.

• If $\land S$ and $\lor S$ exist for all $S \subseteq P$, then P is a complete lattice.

• All finite lattices are complete

• Example of a lattice that is not complete
 - Integers I
 - For any $x, y \in I$, $x \lor y = \max(x, y)$, $x \land y = \min(x, y)$
 - But $\lor I$ and $\land I$ do not exist
 - $I \cup \{+\infty, -\infty\}$ is a complete lattice
Top and Bottom

- Greatest element of P (if it exists) is top
- Least element of P (if it exists) is bottom (\bot)
Connection Between \leq, \wedge, and \vee

- The following 3 properties are equivalent:
 - $x \leq y$
 - $x \vee y = y$
 - $x \wedge y = x$

- Will prove:
 - $x \leq y$ implies $x \vee y = y$ and $x \wedge y = x$
 - $x \vee y = y$ implies $x \leq y$
 - $x \wedge y = x$ implies $x \leq y$

- Then by transitivity, can obtain
 - $x \vee y = y$ implies $x \wedge y = x$
 - $x \wedge y = x$ implies $x \vee y = y$
Connecting Lemma Proofs

• Proof of $x \leq y$ implies $x \lor y = y$
 – $x \leq y$ implies y is an upper bound of $\{x, y\}$.
 – Any upper bound z of $\{x, y\}$ must satisfy $y \leq z$.
 – So y is least upper bound of $\{x, y\}$ and $x \lor y = y$

• Proof of $x \leq y$ implies $x \land y = x$
 – $x \leq y$ implies x is a lower bound of $\{x, y\}$.
 – Any lower bound z of $\{x, y\}$ must satisfy $z \leq x$.
 – So x is greatest lower bound of $\{x, y\}$ and $x \land y = x$
Connecting Lemma Proofs

• Proof of $x \lor y = y$ implies $x \leq y$
 – y is an upper bound of $\{x, y\}$ implies $x \leq y$
• Proof of $x \land y = x$ implies $x \leq y$
 – x is a lower bound of $\{x, y\}$ implies $x \leq y$
Lattices as Algebraic Structures

• Have defined \(\lor \) and \(\land \) in terms of \(\leq \)

• Will now define \(\leq \) in terms of \(\lor \) and \(\land \)

 – Start with \(\lor \) and \(\land \) as arbitrary algebraic operations that satisfy associative, commutative, idempotence, and absorption laws

 – Will define \(\leq \) using \(\lor \) and \(\land \)

 – Will show that \(\leq \) is a partial order

• Intuitive concept of \(\lor \) and \(\land \) as information combination operators (or, and)
Algebraic Properties of Lattices

Assume arbitrary operations \lor and \land such that

- $(x \lor y) \lor z = x \lor (y \lor z)$ (associativity of \lor)
- $(x \land y) \land z = x \land (y \land z)$ (associativity of \land)
- $x \lor y = y \lor x$ (commutativity of \lor)
- $x \land y = y \land x$ (commutativity of \land)
- $x \lor x = x$ (idempotence of \lor)
- $x \land x = x$ (idempotence of \land)
- $x \lor (x \land y) = x$ (absorption of \lor over \land)
- $x \land (x \lor y) = x$ (absorption of \land over \lor)
Connection Between \land and \lor

- $x \lor y = y$ if and only if $x \land y = x$
- Proof of $x \lor y = y$ implies $x = x \land y$

 \[
 x = x \land (x \lor y) \quad \text{(by absorption)}

 = x \land y \quad \text{(by assumption)}
 \]

- Proof of $x \land y = x$ implies $y = x \lor y$

 \[
 y = y \lor (y \land x) \quad \text{(by absorption)}

 = y \lor (x \land y) \quad \text{(by commutativity)}

 = y \lor x \quad \text{(by assumption)}

 = x \lor y \quad \text{(by commutativity)}
 \]
Properties of \leq

- Define $x \leq y$ if $x \lor y = y$
- Proof of transitive property. Must show that $x \lor y = y$ and $y \lor z = z$ implies $x \lor z = z$

$$x \lor z = x \lor (y \lor z) \quad \text{(by assumption)}$$
$$= (x \lor y) \lor z \quad \text{(by associativity)}$$
$$= y \lor z \quad \text{(by assumption)}$$
$$= z \quad \text{(by assumption)}$$
Properties of \leq

• Proof of asymmetry property. Must show that $\forall x \forall y (x \lor y = y$ and $y \lor x = x$ implies $x = y$

 \[
 x = y \lor x \quad \text{(by assumption)}
 \]

 \[
 = x \lor y \quad \text{(by commutativity)}
 \]

 \[
 = y \quad \text{(by assumption)}
 \]

• Proof of reflexivity property. Must show that $\forall x (x \lor x = x$

 \[
 x \lor x = x \quad \text{(by idempotence)}
 \]
Properties of \leq

- Induced operation \leq agrees with original definitions of \lor and \land, i.e.,
 \[x \lor y = \sup \{x, y\} \]
 \[x \land y = \inf \{x, y\} \]
Proof of $x \lor y = \sup \{x, y\}$

- Consider any upper bound u for x and y.
- Given $x \lor u = u$ and $y \lor u = u$, must show $x \lor y \leq u$, i.e., $(x \lor y) \lor u = u$

\[
\begin{align*}
u &= x \lor u & \text{(by assumption)} \\
 &= x \lor (y \lor u) & \text{(by assumption)} \\
 &= (x \lor y) \lor u & \text{(by associativity)}
\end{align*}
\]
Proof of $x \land y = \inf \{x, y\}$

- Consider any lower bound l for x and y.
- Given $x \land l = l$ and $y \land l = l$, must show $l \leq x \land y$, i.e., $(x \land y) \land l = l$

\[
\begin{align*}
l &= x \land l \quad \text{(by assumption)} \\
 &= x \land (y \land l) \quad \text{(by assumption)} \\
 &= (x \land y) \land l \quad \text{(by associativity)}
\end{align*}
\]
Chains

- A set S is a chain if $\forall x, y \in S. \ y \leq x$ or $x \leq y$
- P has no infinite chains if every chain in P is finite
- P satisfies the ascending chain condition if for all sequences $x_1 \leq x_2 \leq \ldots$ there exists n such that $x_n = x_{n+1} = \ldots$.
Application to Dataflow Analysis

• Dataflow information will be lattice values
 – Transfer functions operate on lattice values
 – Solution algorithm will generate increasing sequence of values at each program point
 – Ascending chain condition will ensure termination

• Will use \(\lor \) to combine values at control-flow join points
Transfer Functions

- Transfer function $f: P \rightarrow P$ for each node in control flow graph
- f models effect of the node on the program information
Transfer Functions

Each dataflow analysis problem has a set F of transfer functions $f: P \rightarrow P$

- Identity function $i \in F$
- F must be closed under composition:
 $\forall f, g \in F. \text{ the function } h = \lambda x. f(g(x)) \in F$
- Each $f \in F$ must be monotone:
 $x \leq y$ implies $f(x) \leq f(y)$
- Sometimes all $f \in F$ are distributive:
 $f(x \lor y) = f(x) \lor f(y)$
- Distributivity implies monotonicity
Distributivity Implies Monotonicity

• Proof of distributivity implies monotonicity
• Assume $f(x \lor y) = f(x) \lor f(y)$
• Must show: $x \lor y = y$ implies $f(x) \lor f(y) = f(y)$

 \[
 f(y) = f(x \lor y) \quad \text{(by assumption)}
 \]

 \[
 = f(x) \lor f(y) \quad \text{(by distributivity)}
 \]
Putting Pieces Together

• Forward Dataflow Analysis Framework
• Simulates execution of program forward with flow of control
Forward Dataflow Analysis

- Simulates execution of program forward with flow of control
- For each node n, have
 - in_n – value at program point before n
 - out_n – value at program point after n
 - f_n – transfer function for n (given in_n, computes out_n)
- Require that solution satisfy
 - $\forall n. \ out_n = f_n(in_n)$
 - $\forall n \neq n_0. \ in_n = \lor \{ \ out_m . \ m \ in \ pred(n) \}$
 - $in_{n_0} = I$
 - Where I summarizes information at start of program
Dataflow Equations

• Compiler processes program to obtain a set of dataflow equations

\[
\text{out}_n := f_n(\text{in}_n)
\]

\[
\text{in}_n := \bigvee \{ \text{out}_m \cdot m \text{ in pred}(n) \}
\]

• Conceptually separates analysis problem from program
Worklist Algorithm for Solving Forward Dataflow Equations

for each n do $\text{out}_n := f_n(\perp)$

$\text{in}_{n_0} := I$; $\text{out}_{n_0} := f_{n_0}(I)$

worklist := $N - \{ n_0 \}$

while worklist $\neq \emptyset$ do

remove a node n from worklist

$\text{in}_n := \lor \{ \text{out}_m . m \text{ in pred}(n) \}$

$\text{out}_n := f_n(\text{in}_n)$

if out_n changed then

worklist := worklist $\cup \text{succ}(n)$
Correctness Argument

- Why result satisfies dataflow equations
- Whenever process a node n, set $out_n := f_n(in_n)$
 Algorithm ensures that $out_n = f_n(in_n)$
- Whenever out_m changes, put $succ(m)$ on worklist.
 Consider any node $n \in succ(m)$. It will eventually come off worklist and algorithm will set

 $in_n := \lor \{ out_m . m \in pred(n) \}$

 to ensure that $in_n = \lor \{ out_m . m \in pred(n) \}$
- So final solution will satisfy dataflow equations
Termination Argument

- Why does algorithm terminate?
- Sequence of values taken on by in_n or out_n is a chain. If values stop increasing, worklist empties and algorithm terminates.
- If lattice has ascending chain property, algorithm terminates
 - Algorithm terminates for finite lattices
 - For lattices without ascending chain property, use widening operator
Widening Operators

- Detect lattice values that may be part of infinitely ascending chain
- Artificially raise value to least upper bound of chain
- Example:
 - Lattice is set of all subsets of integers
 - Could be used to collect possible values taken on by variable during execution of program
 - Widening operator might raise all sets of size n or greater to TOP (likely to be useful for loops)
Reaching Definitions

- $P =$ powerset of set of all definitions in program (all subsets of set of definitions in program)
- $\lor = \cup$ (order is \subseteq)
- $\bot = \emptyset$
- $I = \text{in}_{n_0} = \bot$
- $F =$ all functions f of the form $f(x) = a \cup (x-b)$
 - b is set of definitions that node kills
 - a is set of definitions that node generates
- General pattern for many transfer functions
 - $f(x) = \text{GEN} \cup (x-\text{KILL})$
Does Reaching Definitions Framework Satisfy Properties?

- \subseteq satisfies conditions for \leq
 - $x \subseteq y$ and $y \subseteq z$ implies $x \subseteq z$ (transitivity)
 - $x \subseteq y$ and $y \subseteq x$ implies $y = x$ (asymmetry)
 - $x \subseteq x$ (idempotence)

- F satisfies transfer function conditions
 - $\lambda x. \emptyset \cup (x - \emptyset) = \lambda x. x \in F$ (identity)
 - Will show $f(x \cup y) = f(x) \cup f(y)$ (distributivity)
 $$f(x) \cup f(y) = (a \cup (x - b)) \cup (a \cup (y - b))$$
 $$= a \cup (x - b) \cup (y - b) = a \cup ((x \cup y) - b)$$
 $$= f(x \cup y)$$
Does Reaching Definitions Framework Satisfy Properties?

- What about composition?
 - Given \(f_1(x) = a_1 \cup (x-b_1) \) and \(f_2(x) = a_2 \cup (x-b_2) \)
 - Must show \(f_1(f_2(x)) \) can be expressed as \(a \cup (x - b) \)
 \[
 f_1(f_2(x)) = a_1 \cup ((a_2 \cup (x-b_2)) - b_1)
 = a_1 \cup ((a_2 - b_1) \cup ((x-b_2) - b_1))
 = (a_1 \cup (a_2 - b_1)) \cup ((x-b_2) - b_1))
 = (a_1 \cup (a_2 - b_1)) \cup (x-(b_2 \cup b_1))

 - Let \(a = (a_1 \cup (a_2 - b_1)) \) and \(b = b_2 \cup b_1 \)
 - Then \(f_1(f_2(x)) = a \cup (x - b) \)
General Result

All GEN/KILL transfer function frameworks satisfy

- Identity
- Distributivity
- Composition

Properties
Available Expressions

- $P = \text{powerset of set of all expressions in program (all subsets of set of expressions)}$
- $\lor = \cap$ (order is \supseteq)
- $\bot = P$
- $I = \text{in}_{n_0} = \emptyset$
- $F = \text{all functions } f \text{ of the form } f(x) = a \cup (x-b)$
 - b is set of expressions that node kills
 - a is set of expressions that node generates
- Another GEN/KILL analysis
Concept of Conservatism

- Reaching definitions use \cup as join
 - Optimizations must take into account all definitions that reach along ANY path
- Available expressions use \cap as join
 - Optimization requires expression to reach along ALL paths
- Optimizations must conservatively take all possible executions into account. Structure of analysis varies according to way analysis used.
Backward Dataflow Analysis

• Simulates execution of program backward against the flow of control

• For each node \(n \), have
 – \(\text{in}_n \) – value at program point before \(n \)
 – \(\text{out}_n \) – value at program point after \(n \)
 – \(f_n \) – transfer function for \(n \) (given \(\text{out}_n \), computes \(\text{in}_n \))

• Require that solution satisfies
 – \(\forall n. \, \text{in}_n = f_n(\text{out}_n) \)
 – \(\forall n \notin N_{\text{final}}. \, \text{out}_n = \lor \{ \text{in}_m \. \, m \in \text{succ}(n) \} \)
 – \(\forall n \in N_{\text{final}} = \text{out}_n = O \)
 – Where \(O \) summarizes information at end of program
Worklist Algorithm for Solving Backward Dataflow Equations

for each n do $\text{in}_n := f_n(\perp)$
for each $n \in N_{\text{final}}$ do $\text{out}_n := O; \text{in}_n := f_n(O)$

worklist := $N - N_{\text{final}}$

while worklist $\neq \emptyset$ do
 remove a node n from worklist
 $\text{out}_n := \lor \{ \text{in}_m . m \in \text{succ}(n) \}$
 $\text{in}_n := f_n(\text{out}_n)$
 if in_n changed then
 worklist := worklist \cup pred(n)
Live Variables

• \(P = \text{powerset of set of all variables in program} \) (all subsets of set of variables in program)

• \(\vee = \cup \) (order is \(\subseteq \))

• \(\bot = \emptyset \)

• \(O = \emptyset \)

• \(F = \text{all functions } f \text{ of the form } f(x) = a \cup (x-b) \)
 - \(b \) is set of variables that node kills
 - \(a \) is set of variables that node reads
Meaning of Dataflow Results

• Concept of program state s for control-flow graphs
 • Program point n where execution located
 (n is node that will execute next)
 • Values of variables in program
• Each execution generates a trajectory of states:
 \(- s_0; s_1; \ldots; s_k, \text{where each } s_i \in ST\)
 \(- s_{i+1} \text{ generated from } s_i \text{ by executing basic block to} \)
 • Update variable values
 • Obtain new program point n
Relating States to Analysis Result

- Meaning of analysis results is given by an abstraction function $AF: ST \rightarrow P$
- Correctness condition: require that for all states s, $AF(s) \leq in_n$
 where n is the next statement to execute in state s
Sign Analysis Example

- Sign analysis - compute sign of each variable v
- Base Lattice: $P = \text{flat lattice on } \{-,0,+\}$

 ![Lattice Diagram]

- Actual lattice records a value for each variable
 - Example element: $[a \mapsto +, b \mapsto 0, c \mapsto -]$
Interpretation of Lattice Values

- If value of v in lattice is:
 - BOT: no information about sign of v
 - -: variable v is negative
 - 0: variable v is 0
 - +: variable v is positive
 - TOP: v may be positive or negative

- What is abstraction function AF?
 - \(AF([x_1, ..., x_n]) = [\text{sign}(x_1), ..., \text{sign}(x_n)] \)
 - Where \(\text{sign}(x) = 0 \) if \(x = 0 \), + if \(x > 0 \), - if \(x < 0 \)
Operation \otimes on Lattice

<table>
<thead>
<tr>
<th>\otimes</th>
<th>BOT</th>
<th>-</th>
<th>0</th>
<th>+</th>
<th>TOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOT</td>
<td>BOT</td>
<td>BOT</td>
<td>0</td>
<td>BOT</td>
<td>BOT</td>
</tr>
<tr>
<td>-</td>
<td>BOT</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>TOP</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+</td>
<td>BOT</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>TOP</td>
</tr>
<tr>
<td>TOP</td>
<td>BOT</td>
<td>TOP</td>
<td>0</td>
<td>TOP</td>
<td>TOP</td>
</tr>
</tbody>
</table>
Transfer Functions

• If n of the form \(v = c \)
 - \(f_n(x) = x[v \rightarrow+] \) if c is positive
 - \(f_n(x) = x[v \rightarrow 0] \) if c is 0
 - \(f_n(x) = x[v \rightarrow -] \) if c is negative

• If n of the form \(v_1 = v_2 \ast v_3 \)
 - \(f_n(x) = x[v_1 \rightarrow x[v_2] \otimes x[v_3]] \)

• \(I = \text{TOP} \)
 (uninitialized variables may have any sign)
Example

\[a = 1 \]

\[\begin{align*}
 b &= -1 \\
 b &= 1
\end{align*} \]

\[\begin{align*}
 c &= a \times b \\
 c &= a \times b, b \rightarrow \text{TOP}
\end{align*} \]
Imprecision In Example

Abstraction Imprecision:
[a→1] abstracted as [a→+]

Control Flow Imprecision:
[b→TOP] summarizes results of all executions. In any execution state s, AF(s)[b]≠TOP
General Sources of Imprecision

• Abstraction Imprecision
 – Concrete values (integers) abstracted as lattice values (-, 0, and +)
 – Lattice values less precise than execution values
 – Abstraction function throws away information

• Control Flow Imprecision
 – One lattice value for all possible control flow paths
 – Analysis result has a single lattice value to summarize results of multiple concrete executions
 – Join operation \lor moves up in lattice to combine values from different execution paths
 – Typically if $x \leq y$, then x is more precise than y
Why Have Imprecision

• Make analysis tractable
• Unbounded sets of values in execution
 – Typically abstracted by finite set of lattice values
• Execution may visit unbounded set of states
 – Abstracted by computing joins of different paths
Abstraction Function

• \(AF(s)[v] = \text{sign of } v \)
 – \(AF(n, [a \rightarrow 5, b \rightarrow 0, c \rightarrow -2]) = [a \rightarrow +, b \rightarrow 0, c \rightarrow -] \)

• Establishes meaning of the analysis results
 – If analysis says variable has a given sign
 – Always has that sign in actual execution

• Correctness condition:
 – \(\forall v. \ AF(s)[v] \leq \text{in}_n[v] \) (\(n \) is node for \(s \))
 – Reflects possibility of imprecision
Abstraction Function Soundness

- Will show
 \[\forall v. \text{AF}(s)[v] \leq \text{in}_n[v] \] (n is node for s) by induction on length of computation that produced s

- Base case:
 - \[\forall v. \text{in}_{n_0}[v] = \text{TOP} \], which implies that
 - \[\forall v. \text{AF}(s)[v] \leq \text{TOP} \]
Induction Step

• Assume ∀ v. AF(s)[v] ≤ in_n[v] for computations of length k
• Prove for computations of length k+1
• Proof:
 – Given s (state), n (node to execute next), and in_n
 – Find p (the node that just executed), s_p (the previous state), and in_p
 – By induction hypothesis ∀ v. AF(s_p)[v] ≤ in_p[v]
 – Case analysis on form of n
 • If n of the form v = c, then
 – s[v] = c and out_p[v] = sign(c), so
 AF(s)[v] = sign(c) = out_p[v] ≤ in_n[v]
 – If x≠v, s[x] = s_p[x] and out_p[x] = in_p[x], so
 AF(s)[x] = AF(s_p)[x] ≤ in_p[x] = out_p[x] ≤ in_n[x]
 • Similar reasoning if n of the form v_1 = v_2*v_3
Augmented Execution States

- Abstraction functions for some analyses require augmented execution states
 - Reaching definitions: states are augmented with definition that created each value
 - Available expressions: states are augmented with expression for each value
Meet Over Paths Solution

• What solution would be ideal for a forward dataflow analysis problem?

• Consider a path $p = n_0, n_1, \ldots, n_k, n$ to a node n
 (note that for all $i n_i \in \text{pred}(n_{i+1})$)

• The solution must take this path into account:
 $$f_p(\bot) = (f_{nk}(f_{nk-1}(...f_{n1}(f_{n0}(\bot)) ...)) \leq in_n$$

• So the solution must have the property that
 $$\vee\{f_p(\bot) . p \text{ is a path to } n\} \leq in_n$$
 and ideally
 $$\vee\{f_p(\bot) . p \text{ is a path to } n\} = in_n$$
Soundness Proof of Analysis Algorithm

• Property to prove:
 For all paths p to n, $f_p(\perp) \leq \text{in}_n$

• Proof is by induction on length of p
 – Uses monotonicity of transfer functions
 – Uses following lemma

• Lemma:
 Worklist algorithm produces a solution such that
 \[
 f_n(\text{in}_n) = \text{out}_n
 \]
 if $n \in \text{pred}(m)$ then $\text{out}_n \leq \text{in}_m$
Proof

• Base case: \(p \) is of length 1
 – Then \(p = n_0 \) and \(f_p(\perp) = \perp = \text{in}_{n_0} \)

• Induction step:
 – Assume theorem for all paths of length \(k \)
 – Show for an arbitrary path \(p \) of length \(k+1 \)
Induction Step Proof

- $p = n_0, \ldots, n_k, n$
- Must show $f_k(f_{k-1}(\ldots f_{n1}(f_{n0}(\bot)) \ldots)) \leq \text{in}_n$
 - By induction $(f_{k-1}(\ldots f_{n1}(f_{n0}(\bot)) \ldots)) \leq \text{in}_{nk}$
 - Apply f_k to both sides, by monotonicity we get $f_k(f_{k-1}(\ldots f_{n1}(f_{n0}(\bot)) \ldots)) \leq f_k(\text{in}_{nk})$
 - By lemma, $f_k(\text{in}_{nk}) = \text{out}_{nk}$
 - By lemma, $\text{out}_{nk} \leq \text{in}_n$
 - By transitivity, $f_k(f_{k-1}(\ldots f_{n1}(f_{n0}(\bot)) \ldots)) \leq \text{in}_n$
Distributivity

- Distributivity preserves precision
- If framework is distributive, then worklist algorithm produces the meet over paths solution
 - For all n:
 \[
 \lor \{ f_p (\perp) \mid p \text{ is a path to } n \} = \text{in}_n
 \]
Lack of Distributivity Example

- Constant Calculator
- Flat Lattice on Integers

- Actual lattice records a value for each variable
 - Example element: [a→3, b→2, c→5]
Transfer Functions

- If \(n \) of the form \(v = c \)
 \(f_n(x) = x[v \rightarrow c] \)

- If \(n \) of the form \(v_1 = v_2 + v_3 \)
 \(f_n(x) = x[v_1 \rightarrow x[v_2] + x[v_3]] \)

- Lack of distributivity
 - Consider transfer function \(f \) for \(c = a + b \)
 \(f([a \rightarrow 3, \ b \rightarrow 2]) \lor f([a \rightarrow 2, \ b \rightarrow 3]) = [a \rightarrow \text{TOP}, \ b \rightarrow \text{TOP}, \ c \rightarrow 5] \)
 \(f([a \rightarrow 3, \ b \rightarrow 2] \lor [a \rightarrow 2, \ b \rightarrow 3]) = f([a \rightarrow \text{TOP}, \ b \rightarrow \text{TOP}]) = [a \rightarrow \text{TOP}, \ b \rightarrow \text{TOP}, \ c \rightarrow \text{TOP}] \)
Lack of Distributivity Anomaly

\[a = 2 \quad a = 3 \]
\[b = 3 \quad b = 2 \]
\[[a \rightarrow 2, \ b \rightarrow 3] \quad [a \rightarrow 3, \ b \rightarrow 2] \]
\[[a \rightarrow \text{TOP}, \ b \rightarrow \text{TOP}] \]
\[c = a + b \]

Lack of Distributivity Imprecision:
\[[a \rightarrow \text{TOP}, \ b \rightarrow \text{TOP}, \ c \rightarrow 5] \text{ more precise} \]
\[[a \rightarrow \text{TOP}, \ b \rightarrow \text{TOP}, \ c \rightarrow \text{TOP}] \]

What is the meet over all paths solution?
How to Make Analysis Distributive

• Keep combinations of values on different paths

\[\begin{align*}
& a = 2, b = 3 \\
& a = 3, b = 2 \\
& c = a + b
\end{align*} \]

\[\{ [a \rightarrow 2, b \rightarrow 3], [a \rightarrow 3, b \rightarrow 2] \} \]
Issues

• Basically simulating all combinations of values in all executions
 – Exponential blowup
 – Nontermination because of infinite ascending chains

• Nontermination solution
 – Use widening operator to eliminate blowup
 (can make it work at granularity of variables)
 – Loses precision in many cases
Multiple Fixed Points

- Dataflow analysis generates least fixed point
- May be multiple fixed points
- Available expressions example

\[
a = x + y
\]

\[
i == 0
\]

\[
b = x + y;
\]

\[
nop
\]
Summary

• Formal dataflow analysis framework
 – Lattices, partial orders
 – Transfer functions, joins and splits
 – Dataflow equations and fixed point solutions

• Connection with program
 – Abstraction function $AF: S \rightarrow P$
 – For any state s and program point n, $AF(s) \leq in_n$
 – Meet over all paths solutions, distributivity