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Uniprocessor Performance (SPECint)
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Issues with Parallelism

e Amdhal’s Law

— Any computation can be analyzed in terms of a portion that
must be executed sequentially, Ts, and a portion that can be
executed in parallel, Tp. Then for n processors:

— T(n) =Ts + Tp/n
— T(ew) = Ts, thus maximum speedup (Ts + Tp) /Ts

e Load Balancing

— The work is distributed among processors so that a/f processors
are kept busy when parallel task is executed.

e Granularity

— The size of the parallel regions between synchronizations or
the ratio of computation (useful work) to communication
(overhead).
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Types of Parallelism

Instruction Level
Parallelism (ILP)

Task Level Parallelism
(TLP)

- Scheduling and Hardware

- Mainly by hand

Loop Level Parallelism
(LLP) or Data Parallelism

- Hand or Compiler Generated

Pipeline Parallelism

Divide and Conquer
Parallelism

- Hardware or Streaming

- Recursive functions




Why Loops?

e 90% of the execution time in 10% of the code
— Mostly in loops

e If parallel, can get good performance
— Load balancing

e Relatively easy to analyze



Programmer Defined Parallel Loop

e FORALL e FORACROSS
— No “loop carried — Some “loop carried
dependences” dependences”
— Fully parallel
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Parallel Execution

e Example
FORPAR I = 0 to N
A[I] = A[I] + 1

e Block Distribution: Program gets mapped into
Iters = ceiling (N/NUMPROC) ;
FOR P = 0 to NUMPROC-1
FOR I = P*Iters to MIN((P+1l)*Iters, N)
A[I] = A[I] + 1

e SPMD (Single Program, Multiple Data) Code

If (myPid == 0) {

Iters = ceiling (N/NUMPROC) ;

}

Barrier() ;

FOR I = myPid*Iters to MIN( (myPid+1l) *Iters, N)
A[I] = A[I] + 1

Barrier () ;




Parallel Execution

e Example

FORPAR I = 0 to N
A[I] = A[I] + 1

e Block Distribution: Program gets mapped into
Iters = ceiling (N/NUMPROC) ;

FOR P = 0 to NUMPROC-1
FOR I = P*Iters to MIN((P+1l)*Iters, N)
A[I] = A[I] + 1

e Code fork a function
Iters = ceiling (N/NUMPROC) ;
FOR P = 0 to NUMPROC - 1 { ParallelExecute(funcl, P); }
BARRIER (NUMPROC) ;
void funcl (integer myPid)

{
FOR I = myPid*Iters to MIN( (myPid+1l) *Iters, N)

A[I] = A[I] + 1




Parallel Thread Basics

e Create separate threads

— Create an OS thread
e (hopefully) it will be run on a separate core
— pthread_create(&thr, NULL, &entry_point, NULL)

— QOverhead in thread creation
e Create a separate stack
e Get the OS to allocate a thread

e Thread pool
— Create all the threads (= num cores) at the beginning
— Keep N-1 idling on a barrier, while sequential execution

— Get them to run parallel code by each executing a
function

— Back to the barrier when parallel region is done
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Parallelizing Compilers

e Finding FORALL Loops out of FOR loops

e Examples
FOR I = 0 to 5
A[I] = A[I] + 1

FOR I =0 to 5
A[I] = A[I+6] + 1

For I = 0 to 5
A[2*I] = A[2*I + 1] + 1



Iteration Space

e N deep loops > N-dimensional discrete iteration space
— Normalized loops: assume step size = 1

012 34567 <]
FOR I = 0 to 6

FOR J = I to 7

o Iterations are represented as coordinates in iteration space
- I = [Ill |21 I3/ I ]



Iteration Space

e N deep loops > N-dimensional discrete iteration space
— Normalized loops: assume step size = 1

012 34567 <]
FOR I = 0 to 6

FOR J = I to 7

e Iterations are represented as coordinates in iteration space

e Sequential execution order of iterations = Lexicographic order
[OIO]I [Oll]l [0,2], Y 4 [016]1 [017]1
[111]1 [1I2]I Y 4 [116]1 [117]1
[212]1 R 4 [216]1 [217]1

[6,6], [6,7],



Iteration Space

e N deep loops > N-dimensional discrete iteration space
— Normalized loops: assume step size = 1

012 34567 <]

FOR I = 0 to 6 0
FOR J =1I to 7 1 O—O—O—O—O—0O—0
2 O—O—O—O0—0—0
I-> 3 —0—0—0—0
4 O—0—0—0
5 o—0—0
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e Iterations are represented as coordinates in iteration space
° Sequential execution order of iterations =» Lexicographic order

o Iterationi is lexicograpically less thanJ i<7 iff
there exists c s.t. iy = jy, iy = Jy,-- ey = Joop @Nd i < e



Iteration Space

e N deep loops > N-dimensional discrete iteration space
— Normalized loops: assume step size = 1

012 34567 <]
FOR I = 0 to 6

FOR J = I to 7

e An affine loop nest

— Loop bounds are integer linear functions of constants, loop constant
variables and outer loop indexes

— Array accesses are integer linear functions of constants, loop constant
variables and loop indexes



Iteration Space

e N deep loops > N-dimensional discrete iteration space
— Normalized loops: assume step size = 1

012 345617,

FOR I = 0 to 6
FOR J = I to 7

o Affine loop nest > Iteration space as a set of linear inequalities
0<1I
I<6
I1<]
J<7



Data Space

e M dimensional arrays 2> M-dimensional discrete cartesian space
— a hypercube
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Dependences

True dependence
a

a

Anti dependence
a

a

Output dependence
a =
a

Definition:

Data dependence exists for a dynamic instance i and j iff
— either i or j is a write operation
— iand j refer to the same variable
— i executes before j

How about array accesses within loops?
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Array Accesses in a loop

FOR I =0 to 5
A[I] = A[I] + 1

n Space Data Space
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Array Accesses in a loop
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A[I+1]

A[I+1]

A[I+1]

A[I+1]

A[I+1]

A[I+1]

= A[I]

= A[I]

= A[I]

= A[1]

= A[I]

= A[I]
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A[T]
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Array Accesses in a loop

FOR I = 0 to 5

A[2*I] = A[2*I+1] + 1
Iteration Space Data Space
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o—0——0—0—0—0 OH— {1 {1 {1 i o, i {1 —t —1
= A[2*I+1] O O
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A[2*1] O
= A[2*I+1] O O
A[2*]] m
= A[2*I+1] O O
A[2*I] O
= A[2*I+1] O 0
A[2*1] O



Distance Vectors

e A loop has a distance d if there exist a data
dependence from iteration i to j and d = j-i

e QQQQQQ FeRI-otes

A[I] = A[I] + 1

dv =1 N\ FOR I = 0 to 5
v =1] S

A[I+1] = A[I] + 1

dv:[z] (IIT), FORI=0tos

A[I] = A[I+2] + 1

Qm FOR I = 0 to 5

A[I] = A[0] + 1




Multi-Dimensional Dependence

FOR I =1 to n
FOR J =1 to n
A[I, J] = A[I, J-1] + 1

-



Multi-Dimensional Dependence

FOR I =1 to n — ]

FOR J =1 to n l
I

A[I, J] = A[I, J-1] + 1
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A[I, J] = A[I+1, J] + 1 T
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What is the Dependence?

FOR I =1 to n — ]

FOR J =1 to n

A[I, J] = A[I-1, J+1] + 1




What is the Dependence?
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What is the Dependence?

FOR I =1 to n
FOR J =1 to n
A[I, J] = A[I-1, J+1] + 1




What is the Dependence?

FOR I =1 to n — ]

FOR J =1 ton l./.
|
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the Dependence?
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What is the Dependence?

FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,j] = A[1,]3-1] + A[i-1,3];




Recognizing FORALL Loops

e Find data dependences in loop
— For every pair of array acceses to the same array

If the first access has at least one dynamic instance (an iteration)
in which it refers to a location in the array that the second access
also refers to in at least one of the later dynamic instances

(iterations).
Then there is a data dependence between the statements

— (Note that same array can refer to itself — output dependences)

e Definition

— Loop-carried dependence:
dependence that crosses a loop boundary

o If there are no loop carried dependences - parallelizable



Data Dependence Analysis

e I: Distance Vector method
e II: Integer Programming



Distance Vector Method

e The it" loop is parallelizable for all
dependence d = [d;,...,d;,..d, ]
either

one of dq,...,d._1is > O
or
all dy,...,d, =0



Is the Loop Parallelizable?

MEE ves QQOQQQL FRT =0 oS
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Are the Loops Parallelizable?

FOR I =1 to n
FOR J =1 to n l
A[I, J] = A[I, J-1] + 1
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Are the Loops Parallelizable?

FOR I =1 to n — ]
FOR J =1 to n
A[I, J] = A[I-1, J+1] + 1
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Integer Programming Method

e Example
FOR I = 0 to 5
A[I+1] = A[I] + 1

e Is there a loop-carried dependence between A[I+1] and A[I]

— Are there two distinct iterations i, and i. such that A[i,+1] is the
same location as A[i,]

— Jintegersi,, i. 0<i,i,<5 i,z i i,+1=1i

e Is there a dependence between A[I+1] and A[I+1]

— Are there two distinct iterations i; and i, such that A[i;+1] is the
same location as A[i,+1]

— Jintegersi, i, 0<i,L,<5 =1 §K+1=i+1



Integer Programming Method

FOR I = 0 to 5

) A[I+1l] = A[I] + 1
e Formulation

— 3 an integer vector T such that AT <b where
A is an integer matrix and b is an integer vector



Iteration Space

FOR I = 0 to 5

A[I+1] = A[I] + 1
e N deep loops - n-dimensional
discrete cartesian space
012 34567
e Affine loop nest > Iteration OK' T T
space as a set of linear 1 \’\° —0—6—0—0
inequalities p Q—O—O—O—0—0
0<I 23 \\o O—O—0—0
I1<6 4 \\o o—0—©
I<] 5 \\. o—o
1<7 6 oo




Integer Programming Method

FOR I = 0 to 5

. A[I+1l] = A[I] + 1
e Formulation

— 3 an integer vector T such that AT <b where
A is an integer matrix and b is an integer vector

e Our problem formulation for A[i] and A[i+1]
— Jintegersi,, i. 0<i, i, <5 i, I i,+1= 1
— I, # I is not an affine function
e divide into 2 problems
e Problem 1 with i, < i, and problem 2 with i, < i,
e If either problem has a solution - there exists a dependence
— How abouti,+ 1 = i

e Add two inequalities to single problem
iyt 1<i,andi < i,+1



Integer Programming Formulation

FOR I = 0 to 5
e Problem 1 A[I+1] = A[I] + 1
0<i,
i, <5
0<i
i <5
i, < i
i+ 1<i
< i,+1



Integer Programming Formulation

FOR I = 0 to 5

e Problem 1 A[I+1] = A[I] + 1
0<i, > -, <0
i, <5 > i, <5
0<i 2> -i.<0
<5 > i <5
i< > - < -1
i+1<i > i-i<-1
< i,+1 -2 -,+i <1



Integer Programming Formulation

e Problem 1 A b
0<i, > -, <0 1 0) (o0
i, <5 > i, <5 1 0 5
0<i > -i<0 0 -1 0
i <5 > <5 0 1 5
< > ig-i<-1 1 -1 -1
1< D> i-i<-1 1 -1 -1
< i+l > - +i<t -1 1) 1y

e and problem 2 with i, < i,



Generalization
e An affine loop nest

FOR i, = f,;(c;..c,) to I (c;..c.)
FOR i, = f,,(i;,¢c;..¢,) to I ,(i;,c,..c.)

FOR i, = £, (i,.1,,,¢c;.¢,) to I (i;.1,,,C;..C)

A[f_,(i,.i,,¢c;.c.), £,(i,.i,,¢c.¢p) e, £ (1;.1,,C7.0) ]

o Solve 2*n problems of the form

i, = Jis 12 = Joree i1 = Jn-1r 1n < Jg
i, = Jis i3 = Joree i1 = Jn-1r Jn < 14
i, = Jis 12 = Joree ing < Jna

i, = Jis i = Joree Jn-1 < 1,4

i, = Ji, 12 < Jp

i, = Jy1, J2 < 1,

i, < 3z

J; < 1
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Increasing Parallelization
Opportunities

e Scalar Privatization

e Reduction Recognition

e Induction Variable Identification
e Array Privatization

e L oop Transformations

e Granularity of Parallelism

e Interprocedural Parallelization



Scalar Privatization

e Example

FOR 1 =1 to n
X = A[i] * 3;
B[1] = X;

o Is there a loop carried dependence?
e What is the type of dependence?



Privatization

e Analysis:
— Any anti- and output- loop-carried dependences

e Eliminate by assigning in local context
FOR i =1 to n
integer Xtmp;
Xtmp = A[i] * 3;
B[i] = Xtmp;

e Eliminate by expanding into an array
FOR 1i =1 to n
Xtmp[i] = A[i] * 3;
B[i] = Xtmp[i];



Privatization

e Need a final assignment to maintain the correct
value after the loop nest

e Eliminate by assigning in local context

FOR 1 =1 to n
integer Xtmp;
Xtmp = A[i] * 3;
B[i] = Xtmp;
if(i == n) X = Xtmp

e Eliminate by expanding into an array

FOR 1i =1 to n
Xtmp[i] = A[i] * 3;
B[i] = Xtmp[i];

X = Xtmp[n];



Another Example

e How about loop-carried true
dependences?

e Example

FOR 1 =1 to n
X =X+ A[1];

e [s this loop parallelizable?



Reduction Recognition

e Reduction Analysis:
— Only associative operations
— The result is never used within the loop

e Transformation
Integer Xtmp [NUMPROC] ;
Barrier() ;
FOR i = myPid*Iters to MIN( (myPid+1l) *Iters, n)
Xtmp [myPid] = Xtmp[myPid] + A[i];
Barrier() ;
If (myPid == 0) {
FOR p = 0 to NUMPROC-1
X =X + Xtmp[p]:



Induction Variables

e Example
FOR i = 0 to N
A[i] = 2%i;
o After strength reduction
t=1
FOR 1 = 0 to N
A[i] = t;
t = t*2;

e What happened to loop carried dependences?

e Need to do opposite of this!

— Perform induction variable analysis
— Rewrite IVs as a function of the loop variable



Array Privatization

e Similar to scalar privatization

e However, analysis is more complex

— Array Data Dependence Analysis:
Checks if two iterations access the same location

— Array Data Flow Analysis:
Checks if two iterations access the same value

e Transformations
— Similar to scalar privatization

— Private copy for each processor or expand with an
additional dimension



Loop Transformations

e A loop may not be parallel as is
e Example

FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,j] = A[1,]3-1] + A[i-1,]];




Loop Transformations

_>J

e A loop may not be parallel as is l
e Example I

FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,j] = A[1,]3-1] + A[i-1,]];

. inew 1 1 ioId

e After loop Skewing L— }{0 JL— }
FOR i = 1 to 2*N-3 - =

FORPAR j = max(1l,i-N+2) to min(i, N-1)

A[i-j+1,3j] = A[i-3+1,3-1] + A[i-3,3];




Granularity of Parallelism

e Example
FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,3] = A[i,3] + A[i-1,3];

e Gets transformed into
FOR i = 1 to N-1
Barrier() ;
FOR j = 1+ myPid*Iters to MIN( (myPid+1l) *Iters, n-1)
A[i,j] = A[i,3] + A[i-1,3];
Barrier () ;

}
}
}
:

e Inner loop parallelism can be expensive
— Startup and teardown overhead of parallel regions
— Lot of synchronization
— Can even lead to slowdowns



Granularity of Parallelism

e Inner loop parallelism can be expensive

e Solutions

— Don't parallelize if the amount of work within
the loop is too small

or
— Transform into outer-loop parallelism



Outer Loop Parallelism
—

FOR j = 1 to N-1
A[i,j] = A[i,3j] + A[i-1,3]; |

e Example l

o After Loop Transpose
FOR j = 1 to N-1
FOR i = 1 to N-1 l
A[i,3j] = A[i,3]1 + A[i-1,3];

o Get mapped into
Barrier() ;
FOR j = 1+ myPid*Iters to MIN( (myPid+1l) *Iters, n-1)
FOR i = 1 to N-1
A[i,j] = A[i,3] + A[i-1,3];
Barrier () ;



Unimodular Transformations

e Interchange, reverse and skew

e Use a matrix transformation
Inew = A IoId

o Interchange
e Reverse

e Skew




Legality of Transformations

e Unimodular transformation with matrix A is valid iff.
For all dependence vectors v
the first non-zero in Av is positive

e Example
i=1 to N-1
FOR j = 1 to N-1
A[i,3] = A[i,3] + A[i-1,3];

e Interchange
e Reverse A:{_ol ﬂ

e Skew



Interprocedural Parallelization

e Function calls will make a loop unparallelizatble
— Reduction of available parallelism
— A lot of inner-loop parallelism

e Solutions
— Interprocedural Analysis
— Inlining



Interprocedural Parallelization

e Issues
— Same function reused many times
— Analyze a function on each trace - Possibly exponential
— Analyze a function once = unrealizable path problem

e Interprocedural Analysis
— Need to update all the analysis
— Complex analysis
— Can be expensive

e Inlining
— Works with existing analysis
— Large code bloat - can be very expensive



HashSet h;

fori=1ton
int v = compute(i);
h.insert(i);

Are iterations independent?
Can you still execute the loop in parallel?
Do all parallel executions give same result?



Summary

e Multicores are here
— Need parallelism to keep the performance gains
— Programmer defined or compiler extracted parallelism

o Automatic parallelization of loops with arrays
— Requires Data Dependence Analysis
— Iteration space & data space abstraction
— An integer programming problem

e Many optimizations that'll increase parallelism



