

Parallelization

Outline

- Why Parallelism
- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities

Moore's Law

Uniprocessor Performance (SPECint)

Multicores Are Here!

Issues with Parallelism

- Amdhal's Law
- Any computation can be analyzed in terms of a portion that must be executed sequentially, Ts, and a portion that can be executed in parallel, Tp . Then for n processors:
$-T(n)=T s+T p / n$
$-T(\infty)=T s$, thus maximum speedup (Ts + Tp) /Ts
- Load Balancing
- The work is distributed among processors so that all processors are kept busy when parallel task is executed.
- Granularity
- The size of the parallel regions between synchronizations or the ratio of computation (useful work) to communication (overhead).

Outline

- Why Parallelism
- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities

Types of Parallelism

- Instruction Level Parallelism (ILP)
\rightarrow Scheduling and Hardware
- Task Level Parallelism (TLP)
- Loop Level Parallelism (LLP) or Data Parallelism
- Pipeline Parallelism
- Divide and Conquer Parallelism

Why Loops?

- 90% of the execution time in 10% of the code
- Mostly in loops
- If parallel, can get good performance
- Load balancing
- Relatively easy to analyze

Programmer Defined Parallel Loop

- FORALL
- No "loop carried dependences"
- Fully parallel

- FORACROSS
- Some "loop carried dependences"

Parallel Execution

- Example

$$
\begin{aligned}
\text { FORPAR } I & =0 \text { to } N \\
\mathrm{~A}[I] & =\mathrm{A}[I]+1
\end{aligned}
$$

- Block Distribution: Program gets mapped into

Iters $=$ ceiling (N/NUMPROC) ;
FOR $\mathrm{P}=0$ to NUMPROC-1

```
    FOR I = P*Iters to MIN((P+1)*Iters, N)
```

 \(\mathrm{A}[\mathrm{I}]=\mathrm{A}[\mathrm{I}]+1\)
 - SPMD (Single Program, Multiple Data) Code

```
If(myPid == 0) {
    Iters = ceiling(N/NUMPROC);
}
Barrier();
    FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)
        A[I] = A[I] + 1
    Barrier();
```


Parallel Execution

- Example

$$
\begin{array}{r}
\text { FORPAR } I=0 \text { to } N \\
A[I]=A[I]+1
\end{array}
$$

- Block Distribution: Program gets mapped into

Iters = ceiling (N/NUMPROC) ;
FOR $P=0$ to NUMPROC-1

```
        FOR I = P*Iters to MIN((P+1)*Iters, N)
        A[I] = A[I] + 1
```

- Code fork a function

Parallel Thread Basics

- Create separate threads
- Create an OS thread
- (hopefully) it will be run on a separate core
- pthread_create(\&thr, NULL, \&entry_point, NULL)
- Overhead in thread creation
- Create a separate stack
- Get the OS to allocate a thread
- Thread pool
- Create all the threads (= num cores) at the beginning
- Keep N-1 idling on a barrier, while sequential execution
- Get them to run parallel code by each executing a function
- Back to the barrier when parallel region is done

Outline

- Why Parallelism
- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities

Parallelizing Compilers

- Finding FORALL Loops out of FOR loops
- Examples

$$
\begin{aligned}
& \text { FOR I }=0 \text { to } 5 \\
& \text { A }[\mathrm{I}]=\mathrm{A}[\mathrm{I}]+1 \\
& \mathrm{FOR} \mathrm{I}=0 \text { to } 5 \\
& \mathrm{~A}[\mathrm{I}]=\mathrm{A}[\mathrm{I}+6]+1
\end{aligned}
$$

$$
\text { For } \mathrm{I}=0 \text { to } 5
$$

$$
\mathrm{A}[2 * \mathrm{I}]=\mathrm{A}[2 * \mathrm{I}+1]+1
$$

Iteration Space

- N deep loops $\rightarrow \mathrm{N}$-dimensional discrete iteration space
- Normalized loops: assume step size = 1

$$
\begin{aligned}
& \text { FOR I }=0 \text { to } 6 \\
& \text { FOR } J=I \text { to } 7
\end{aligned}
$$

- Iterations are represented as coordinates in iteration space

$$
-\bar{i}=\left[i_{1}, i_{2}, i_{3}, \ldots, i_{n}\right]
$$

Iteration Space

- N deep loops $\rightarrow \mathrm{N}$-dimensional discrete iteration space
- Normalized loops: assume step size = 1

$$
\begin{aligned}
& \text { FOR I }=0 \text { to } 6 \\
& \text { FOR } J=I \text { to } 7
\end{aligned}
$$

- Iterations are represented as coordinates in iteration space
- Sequential execution order of iterations \rightarrow Lexicographic order $[0,0],[0,1],[0,2], \ldots,[0,6],[0,7]$,

$$
\begin{array}{r}
{[1,1],[1,2], \ldots,[1,6],[1,7],} \\
{[2,2], \ldots,[2,6],[2,7],}
\end{array}
$$

[6,6], [6,7],

Iteration Space

- N deep loops $\rightarrow \mathrm{N}$-dimensional discrete iteration space
- Normalized loops: assume step size = 1

$$
\begin{aligned}
& \text { FOR I }=0 \text { to } 6 \\
& \text { FOR } J=I \text { to } 7
\end{aligned}
$$

- Iterations are represented as coordinates in iteration space
- Sequential execution order of iterations \rightarrow Lexicographic order
- Iteration $\overline{\mathrm{i}}$ is lexicograpically less than $\overline{\mathrm{J}}, \overline{\mathrm{i}}<\overline{\mathrm{J}}$ iff there exists c s.t. $\mathrm{i}_{1}=\mathrm{j}_{1}, \mathrm{i}_{2}=\mathrm{j}_{2}, \ldots \mathrm{i}_{\mathrm{c}-1}=\mathrm{j}_{\mathrm{c}-1}$ and $\mathrm{i}_{\mathrm{c}}<\mathrm{j}_{\mathrm{c}}$

Iteration Space

- N deep loops $\rightarrow \mathrm{N}$-dimensional discrete iteration space
- Normalized loops: assume step size = 1

$$
\begin{aligned}
& \text { FOR I }=0 \text { to } 6 \\
& \text { FOR } J=I \text { to } 7
\end{aligned}
$$

- An affine loop nest
- Loop bounds are integer linear functions of constants, loop constant variables and outer loop indexes
- Array accesses are integer linear functions of constants, loop constant variables and loop indexes

Iteration Space

- N deep loops $\rightarrow \mathrm{N}$-dimensional discrete iteration space
- Normalized loops: assume step size $=1$

$$
\begin{aligned}
& \text { FOR I }=0 \text { to } 6 \\
& \text { FOR } J=I \text { to } 7
\end{aligned}
$$

- Affine loop nest \rightarrow Iteration space as a set of linear inequalities

$$
\begin{gathered}
0 \leq \mathrm{I} \\
\mathrm{I} \leq 6 \\
\mathrm{I} \leq \mathrm{J} \\
\mathrm{~J} \leq 7
\end{gathered}
$$

Data Space

- M dimensional arrays \rightarrow M-dimensional discrete cartesian space
- a hypercube

Integer A(10)

Float $\mathrm{B}(5,6)$

Dependences

- True dependence
a =
$=a$
- Anti dependence

$$
\begin{aligned}
& =a^{\prime} \\
& a=e^{\prime}
\end{aligned}
$$

- Output dependence
a =
a $=$
- Definition:

Data dependence exists for a dynamic instance i and j iff

- either i or j is a write operation
- i and j refer to the same variable
- i executes before j
- How about array accesses within loops?

Outline

- Why Parallelism
- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities

Array Accesses in a loop

$$
\begin{aligned}
& \mathrm{FOR} I=0 \text { to } 5 \\
& \mathrm{~A}[I]=\mathrm{A}[I]+1
\end{aligned}
$$

Iteration Space

Array Accesses in a loop

$$
\begin{aligned}
& \mathrm{FOR} \mathrm{I}=0 \text { to } 5 \\
& \mathrm{~A}[\mathrm{I}]=\mathrm{A}[\mathrm{I}]+1
\end{aligned}
$$

Iteration Space

Data Space

Array Accesses in a loop

Iteration Space

$=A[I]$

A[I+1]	$=A[I]$
$A[I+1]$	
	$=A[I]$
$A[I+1]$	

0
0

$$
\begin{aligned}
& \text { FOR } I=0 \text { to } 5 \\
& \text { A }[I+1]=A[I]+1
\end{aligned}
$$

Data Space

\square

Array Accesses in a loop

Array Accesses in a loop

$$
\begin{aligned}
& \text { FOR I }=0 \text { to } 5 \\
& \quad A[2 * I]=A[2 * I+1]+1
\end{aligned}
$$

Distance Vectors

- A loop has a distance d if there exist a data dependence from iteration i to land d = j-i
$d v=[0]$ $d v=[1]$

$$
\begin{aligned}
& \text { FOR } I=0 \text { to } 5 \\
& \mathrm{~A}[\mathrm{I}]=\mathrm{A}[\mathrm{I}]+1 \\
& \mathrm{FOR} \mathrm{I}=0 \text { to } 5 \\
& \mathrm{~A}[\mathrm{I}+1]=\mathrm{A}[\mathrm{I}]+1 \\
& \mathrm{FOR} \mathrm{I}=0 \text { to } 5 \\
& \mathrm{~A}[\mathrm{I}]=\mathrm{A}[\mathrm{I}+2]+1
\end{aligned}
$$

FOR I = 0 to 5

$$
\mathrm{A}[\mathrm{I}]=\mathrm{A}[0]+1
$$

Multi-Dimensional Dependence

FOR $\mathrm{I}=1$ to n
FOR $\mathrm{J}=1$ to n
A $[\mathrm{I}, \mathrm{J}]=\mathrm{A}[\mathrm{I}, \mathrm{J}-1]+1$

Multi-Dimensional Dependence

FOR $\mathrm{I}=1$ to n
FOR $\mathrm{J}=1$ to n
A [I, J] = A [I, J-1] + 1

FOR $\mathrm{I}=1$ to n

$$
\text { FOR } \mathrm{J}=1 \text { to } \mathrm{n}
$$

$$
\mathrm{A}[\mathrm{I}, \mathrm{~J}]=\mathrm{A}[\mathrm{I}+1, \mathrm{~J}]+1
$$

Outline

- Dependence Analysis
- Increasing Parallelization Opportunities

What is the Dependence?

FOR I = 1 to n FOR J = 1 to n
$\mathrm{A}[I, \mathrm{~J}]=\mathrm{A}[\mathrm{I}-1, \mathrm{~J}+1]+1$

What is the Dependence?

FOR I = 1 to n FOR $\mathrm{J}=1$ to n
$\mathrm{A}[\mathrm{I}, \mathrm{J}]=\mathrm{A}[\mathrm{I}-1, \mathrm{~J}+1]+1$

What is the Dependence?

$$
\begin{aligned}
& \text { FOR } I=1 \text { to } n \\
& \quad \operatorname{FOR} \mathrm{~J}=1 \text { to } \mathrm{n} \\
& \quad \mathrm{~A}[I, \mathrm{~J}]=\mathrm{A}[I-1, \mathrm{~J}+1]+1
\end{aligned}
$$

What is the Dependence?

FOR I = 1 to n FOR $\mathrm{J}=1$ to n
$$
\mathrm{A}[I, J]=\mathrm{A}[I-1, J+1]+1
$$

FOR I = 1 to n
FOR $\mathrm{J}=1$ to n

$$
\mathrm{B}[\mathrm{I}]=\mathrm{B}[\mathrm{I}-1]+1
$$

What is the Dependence?

$$
\begin{aligned}
& \text { FOR } I=1 \text { to } n \\
& \quad \operatorname{FOR} \mathrm{~J}=1 \text { to } \mathrm{n} \\
& \quad \mathrm{~A}[I, \mathrm{~J}]=\mathrm{A}[I-1, \mathrm{~J}+1]+1
\end{aligned}
$$

$$
d v=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$


```
FOR I = 1 to \(\mathbf{n}\)
        FOR J = 1 to n
            \(B[I]=B[I-1]+1\)
```

$d v=\left[\begin{array}{c}1 \\ -1\end{array}\right],\left[\begin{array}{c}1 \\ -2\end{array}\right],\left[\begin{array}{c}1 \\ -3\end{array}\right], \quad \ldots=\left[\begin{array}{c}1 \\ *\end{array}\right]$

What is the Dependence?

$$
\begin{aligned}
& \text { FOR } i=1 \text { to } N-1 \\
& \quad \operatorname{FOR} j=1 \text { to } N-1 \\
& \quad A[i, j]=A[i, j-1]+A[i-1, j] ;
\end{aligned}
$$

Recognizing FORALL Loops

- Find data dependences in loop
- For every pair of array acceses to the same array If the first access has at least one dynamic instance (an iteration) in which it refers to a location in the array that the second access also refers to in at least one of the later dynamic instances (iterations).
Then there is a data dependence between the statements
- (Note that same array can refer to itself - output dependences)
- Definition
- Loop-carried dependence: dependence that crosses a loop boundary
- If there are no loop carried dependences \rightarrow parallelizable

Data Dependence Analysis

- I: Distance Vector method
- II: Integer Programming

Distance Vector Method

- The ith $^{\text {th }}$ loop is parallelizable for all dependence $\mathrm{d}=\left[\mathrm{d}_{1}, \ldots, \mathrm{~d}_{\mathrm{i}}, . \mathrm{d}_{\mathrm{n}}\right]$ either

$$
\text { one of } \mathrm{d}_{1}, \ldots, \mathrm{~d}_{\mathrm{i}-1} \text { is }>0
$$

or

$$
\text { all } d_{1}, \ldots, d_{i}=0
$$

Is the Loop Parallelizable?

Yes

$$
\begin{aligned}
& \text { FOR I }=0 \text { to } 5 \\
& A[I]=A[I]+1
\end{aligned}
$$

No

FOR I = 0 to 5

$$
\mathbf{A}[I+1]=\mathbf{A}[I]+1
$$

FOR I = 0 to 5

$$
A[I]=A[I+2]+1
$$

FOR I = 0 to 5

$$
\mathbf{A}[I]=\mathbf{A}[0]+1
$$

Are the Loops Parallelizable?

$$
\begin{aligned}
& \text { FOR } I=1 \text { to } n \\
& \quad \text { FOR } J=1 \text { to } n \\
& \quad \mathrm{~A}[I, J]=A[I, J-1]+1
\end{aligned}
$$

FOR I = 1 to n

$$
\text { FOR } \mathrm{J}=1 \text { to } \mathrm{n}
$$

$$
\boldsymbol{A}[I, J]=A[I+1, J]+1
$$

Are the Loops Parallelizable?

$$
\begin{aligned}
& \text { FOR } I=1 \text { to } n \\
& \quad \operatorname{FOR} \mathrm{~J}=1 \text { to } \mathrm{n} \\
& \quad \mathrm{~A}[I, \mathrm{~J}]=\mathrm{A}[I-1, \mathrm{~J}+1]+1
\end{aligned}
$$

$$
\begin{aligned}
\text { FOR } I=1 & \text { to } \mathrm{n} \\
\mathrm{FOR} \mathrm{~J} & =1 \text { to } \mathrm{n} \\
\mathrm{~B}[\mathrm{I}] & =\mathrm{B}[\mathrm{I}-1]+1
\end{aligned}
$$

No
Yes

Integer Programming Method

- Example

$$
\begin{aligned}
& \operatorname{FOR} I=0 \text { to } 5 \\
& \mathrm{~A}[I+1]=\mathrm{A}[I]+1
\end{aligned}
$$

- Is there a loop-carried dependence between $\mathrm{A}[\mathrm{I}+1]$ and $\mathrm{A}[\mathrm{I}]$
- Are there two distinct iterations i_{w} and i_{r} such that $A\left[i_{w}+1\right]$ is the same location as $A\left[i_{r}\right]$
$-\exists$ integers $i_{w} i_{r} \quad 0 \leq i_{w}, i_{r} \leq 5 \quad i_{w} \neq i_{r} \quad i_{w}+1=i_{r}$
- Is there a dependence between $A[I+1]$ and $A[I+1]$
- Are there two distinct iterations i_{1} and i_{2} such that $A\left[i_{1}+1\right]$ is the same location as $A\left[i_{2}+1\right]$
$-\exists$ integers $\mathrm{i}_{1}, \mathrm{i}_{2} \quad 0 \leq \mathrm{i}_{1}, \mathrm{i}_{2} \leq 5 \quad \mathrm{i}_{1} \neq \mathrm{i}_{2} \quad \mathrm{i}_{1}+1=\mathrm{i}_{2}+1$

Integer Programming Method

$$
\begin{aligned}
& \text { FOR } I=0 \text { to } 5 \\
& \mathrm{~A}[\mathrm{I}+1]=\mathrm{A}[\mathrm{I}]+1
\end{aligned}
$$

- Formulation
- \exists an integer vector \bar{T} such that $\hat{A} \bar{T} \leq \bar{b}$ where \hat{A} is an integer matrix and $\overline{\mathrm{b}}$ is an integer vector

Iteration Space

$$
\begin{aligned}
& \text { FOR } I=0 \text { to } 5 \\
& \mathrm{~A}[\mathrm{I}+1]=\mathrm{A}[\mathrm{I}]+1
\end{aligned}
$$

- N deep loops \rightarrow n-dimensional discrete cartesian space
- Affine loop nest \rightarrow Iteration space as a set of linear inequalities

$$
\begin{gathered}
0 \leq \mathrm{I} \\
\mathrm{I} \leq 6 \\
\mathrm{I} \leq \mathrm{J} \\
\mathrm{~J} \leq 7
\end{gathered}
$$

Integer Programming Method

$$
\begin{aligned}
& \text { FOR } I=0 \text { to } 5 \\
& \mathbf{A}[I+1]=\boldsymbol{A}[I]+1
\end{aligned}
$$

- Formulation
- \exists an integer vector \bar{T} such that $\hat{A} \bar{T} \leq \overline{\mathrm{D}}$ where \hat{A} is an integer matrix and $\overline{\mathrm{B}}$ is an integer vector
- Our problem formulation for $A[i]$ and $A[i+1]$
$-\exists$ integers $i_{w}, i_{r} \quad 0 \leq i_{w}, i_{r} \leq 5 i_{w} \neq i_{r} i_{w}+1=i_{r}$
$-i_{w} \neq i_{r}$ is not an affine function
- divide into 2 problems
- Problem 1 with $i_{w}<i_{r}$ and problem 2 with $i_{r}<i_{w}$
- If either problem has a solution \rightarrow there exists a dependence
- How about $i_{w}+1=i_{r}$
- Add two inequalities to single problem

$$
\mathrm{i}_{\mathrm{w}}+1 \leq \mathrm{i}_{\mathrm{r}} \text { and } \mathrm{i}_{\mathrm{r}} \leq \mathrm{i}_{\mathrm{w}}+1
$$

Integer Programming Formulation

- Problem 1

$$
\text { FOR I }=0 \text { to } 5
$$

$$
0 \leq i_{w}
$$

$$
i_{w} \leq 5
$$

$$
0 \leq i_{r}
$$

$$
\mathrm{i}_{\mathrm{r}} \leq 5
$$

$$
\mathrm{i}_{\mathrm{w}}<\mathrm{i}_{\mathrm{r}}
$$

$$
i_{w}+1 \leq i_{r}
$$

$$
i_{r} \leq i_{w}+1
$$

Integer Programming Formulation

- Problem 1

$$
\begin{aligned}
& \text { FOR } I=0 \text { to } 5 \\
& \mathrm{~A}[I+1]=\mathrm{A}[I]+1
\end{aligned}
$$

$0 \leq i_{w} \quad \rightarrow \quad-i_{w} \leq 0$
$\mathrm{i}_{\mathrm{w}} \leq 5 \quad \rightarrow \quad \mathrm{i}_{\mathrm{w}} \leq 5$
$0 \leq \mathrm{i}_{\mathrm{r}} \quad \rightarrow \quad-\mathrm{i}_{\mathrm{r}} \leq 0$
$\mathrm{i}_{\mathrm{r}} \leq 5 \quad \rightarrow \quad \mathrm{i}_{\mathrm{r}} \leq 5$
$\mathrm{i}_{\mathrm{w}}<\mathrm{i}_{\mathrm{r}} \quad \rightarrow \quad \mathrm{i}_{\mathrm{w}}-\mathrm{i}_{\mathrm{r}} \leq-1$
$i_{w}+1 \leq i_{r} \quad \rightarrow \quad i_{w}-i_{r} \leq-1$
$\mathrm{i}_{\mathrm{r}} \leq \mathrm{i}_{\mathrm{w}}+1 \quad \rightarrow \quad-\mathrm{i}_{\mathrm{w}}+\mathrm{i}_{\mathrm{r}} \leq 1$

Integer Programming Formulation

- Problem 1

$0 \leq i_{w}$	\rightarrow	$-i_{w} \leq 0$
$i_{w} \leq 5$	\rightarrow	$i_{w} \leq 5$
$0 \leq i_{r}$	\rightarrow	$-i_{i} \leq 0$
$i_{r} \leq 5$	\rightarrow	$i_{r} \leq 5$
$i_{w}<i_{r}$	\rightarrow	$i_{w}-i_{r} \leq-1$
$i_{w}+1 \leq i_{r}$	\rightarrow	$i_{w}-i_{r} \leq-1$
$i_{r} \leq i_{w}+1$	\rightarrow	$-i_{w}+i_{r} \leq 1$

1 \& 0

0 \& -1

0 \& 1

1 \& -1

1 \& -1

-1 \& 1\end{array}\right) \quad\left($$
\begin{array}{c}0 \\
5 \\
0 \\
5 \\
-1 \\
-1 \\
1\end{array}
$$\right)\)

- and problem 2 with $\mathrm{i}_{\mathrm{r}}<\mathrm{i}_{\mathrm{w}}$

Generalization

- An affine loop nest

$$
\begin{aligned}
& \text { FOR } i_{1}=f_{11}\left(c_{1} \ldots c_{k}\right) \text { to } I_{u 1}\left(c_{1} \ldots C_{k}\right) \\
& \quad \text { FOR } i_{2}=f_{12}\left(i_{1}, c_{1} \ldots c_{k}\right) \text { to } I_{u 2}\left(i_{1}, c_{1} \ldots c_{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { FOR } i_{n}=f_{1 n}\left(i_{1} \ldots i_{n-1}, c_{1} \ldots c_{k}\right) \text { to } I_{u n}\left(i_{1} \ldots i_{n-1}, c_{1} \ldots c_{k}\right) \\
& \\
& A\left[f_{a 1}\left(i_{1} \ldots i_{n}, c_{1} \ldots c_{k}\right), f_{a 2}\left(i_{1} \ldots i_{n}, c_{1} \ldots c_{k}\right), \ldots, f_{a m}\left(i_{1} \ldots i_{n}, c_{1} \ldots c_{k}\right)\right]
\end{aligned}
$$

- Solve $2 * n$ problems of the form
- $i_{1}=j_{1}, i_{2}=j_{2}, \ldots \ldots i_{n-1}=j_{n-1}, i_{n}<j_{n}$
- $i_{1}=j_{1}, i_{2}=j_{2}, \ldots \ldots i_{n-1}=j_{n-1}, j_{n}<i_{n}$
- $i_{1}=j_{1}, i_{2}=j_{2}, \ldots \ldots i_{n-1}<j_{n-1}$
- $i_{1}=j_{1}, i_{2}=j_{2}, \ldots \ldots j_{n-1}<i_{n-1}$
- $i_{1}=j_{1}, i_{2}<j_{2}$
- $i_{1}=j_{1}, j_{2}<i_{2}$
- $\mathbf{i}_{1}<j_{1}$
- $\mathbf{j}_{1}<\mathbf{i}_{1}$

Outline

- Why Parallelism
- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities

Increasing Parallelization Opportunities

- Scalar Privatization
- Reduction Recognition
- Induction Variable Identification
- Array Privatization
- Loop Transformations
- Granularity of Parallelism
- Interprocedural Parallelization

Scalar Privatization

- Example

$$
\begin{aligned}
& \text { FOR } i=1 \text { to } n \\
& \mathrm{X}=\mathrm{A}[\mathrm{i}] \star 3 ; \\
& \mathrm{B}[\mathrm{i}]=\mathrm{X} ;
\end{aligned}
$$

- Is there a loop carried dependence?
- What is the type of dependence?

Privatization

- Analysis:
- Any anti- and output- loop-carried dependences
- Eliminate by assigning in local context FOR i $=1$ to n
integer Xtmp;
Xtmp $=$ A [i] * 3;
$B[i]=$ Xtmp ;
- Eliminate by expanding into an array FOR $i=1$ to n

Xtmp [i] $=\mathrm{A}[\mathrm{i}]$ * 3 ;
B[i] = Xtmp[i];

Privatization

- Need a final assignment to maintain the correct value after the loop nest
- Eliminate by assigning in local context

```
FOR i = 1 to n
    integer Xtmp;
    Xtmp = A[i] * 3;
    B[i] = Xtmp;
    if(i == n) X = Xtmp
```

- Eliminate by expanding into an array

```
FOR i = 1 to n
    Xtmp[i] = A[i] * 3;
    B[i] = Xtmp[i];
    X = Xtmp[n];
```


Another Example

- How about loop-carried true dependences?
- Example

$$
\begin{array}{rl}
\text { FOR } i & =1 \text { to } n \\
X=X & X[i]
\end{array}
$$

- Is this loop parallelizable?

Reduction Recognition

- Reduction Analysis:
- Only associative operations
- The result is never used within the loop
- Transformation

```
Integer Xtmp[NUMPROC];
Barrier();
FOR i = myPid*Iters to MIN((myPid+1)*Iters, n)
    Xtmp[myPid] = Xtmp[myPid] + A[i];
Barrier();
If (myPid == 0) {
    FOR p = 0 to NUMPROC-1
        X = X + Xtmp[p];
```


Induction Variables

- Example

FOR i $=0$ to N

$$
\mathrm{A}[i]=2^{\wedge} i ;
$$

- After strength reduction

$$
t=1
$$

$$
\text { FOR i }=0 \text { to } \mathrm{N}
$$

$$
A[i]=t ;
$$

$$
t=t * 2 ;
$$

- What happened to loop carried dependences?
- Need to do opposite of this!
- Perform induction variable analysis
- Rewrite IVs as a function of the loop variable

Array Privatization

- Similar to scalar privatization
- However, analysis is more complex
- Array Data Dependence Analysis:

Checks if two iterations access the same location

- Array Data Flow Analysis:

Checks if two iterations access the same value

- Transformations
- Similar to scalar privatization
- Private copy for each processor or expand with an additional dimension

Loop Transformations

- A loop may not be parallel as is
- Example

FOR i $=1$ to $\mathrm{N}-1$
FOR j $=1$ to $\mathrm{N}-1$

$$
\mathbf{A}[i, j]=A[i, j-1]+\mathbf{A}[i-1, j] ;
$$

Loop Transformations

- A loop may not be parallel as is
- Example

```
FOR i = 1 to N-1
    FOR j = 1 to N-1
    A[i,j] = A[i,j-1] + A[i-1,j];
```

- After loop Skewing FOR i $=1$ to $2 * \mathrm{~N}-3$

$$
\begin{aligned}
& \text { FORPAR } j=\max (1, i-N+2) \text { to } \min (i, N-1) \\
& \text { A }[i-j+1, j]=A[i-j+1, j-1]+A[i-j, j] ;
\end{aligned}
$$

Granularity of Parallelism

- Example

```
FOR i = 1 to N-1
        FOR j = 1 to N-1
        A[i,j] = A[i,j] + A[i-1,j];
```

- Gets transformed into

```
FOR i = 1 to N-1
Barrier();
FOR j = 1+ myPid*Iters to MIN((myPid+1) *Iters, n-1)
    A[i,j] = A[i,j] + A[i-1,j];
    Barrier();
```

- Inner loop parallelism can be expensive
- Startup and teardown overhead of parallel regions
- Lot of synchronization
- Can even lead to slowdowns

Granularity of Parallelism

- Inner loop parallelism can be expensive
- Solutions
- Don't parallelize if the amount of work within the loop is too small
or
- Transform into outer-loop parallelism

Outer Loop Parallelism

- Example

```
FOR i = 1 to N-1
        FOR j = 1 to N-1
\[
\mathrm{A}[i, j]=\mathrm{A}[i, j]+\mathrm{A}[i-1, j] ;
\]
```


- After Loop Transpose

$$
\begin{aligned}
& \text { FOR } j=1 \text { to } N-1 \\
& \quad \operatorname{FOR} i=1 \text { to } N-1 \\
& \quad A[i, j]=A[i, j]+A[i-1, j] ;
\end{aligned}
$$

- Get mapped into

Barrier () ;
FOR j $=1+$ myPid*Iters to MIN ((myPid+1)*Iters, n-1)

$$
\text { FOR } i=1 \text { to } N-1
$$

$$
\mathbf{A}[i, j]=\mathbf{A}[i, j]+\mathbf{A}[i-1, j] ;
$$

Barrier();

Unimodular Transformations

- Interchange, reverse and skew
- Use a matrix transformation

$$
\mathrm{I}_{\text {new }}=\mathrm{A} \mathrm{I}_{\text {old }}
$$

- Interchange

$$
\left[\begin{array}{l}
i_{\text {new }} \\
j_{\text {new }}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
i_{o l d} \\
j_{o l d}
\end{array}\right]
$$

- Reverse

$$
\left[\begin{array}{l}
i_{n e v} \\
j_{n e w}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
i_{\text {old }} \\
j_{\text {old }}
\end{array}\right]
$$

- Skew

$$
\left[\begin{array}{l}
i_{\text {new }} \\
j_{\text {new }}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
i_{\text {old }} \\
j_{o l d}
\end{array}\right]
$$

Legality of Transformations

- Unimodular transformation with matrix A is valid iff.

For all dependence vectors v the first non-zero in Av is positive

- Example

$$
\begin{aligned}
& \text { FOR } i=1 \text { to } N-1 \\
& \quad \operatorname{FOR~j}=1 \text { to } N-1 \\
& \quad A[i, j]=A[i, j]+A[i-1, j] ;
\end{aligned}
$$

- Interchange

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

\square

- Reverse

$$
A=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

- Skew

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

Interprocedural Parallelization

- Function calls will make a loop unparallelizatble
- Reduction of available parallelism
- A lot of inner-loop parallelism
- Solutions
- Interprocedural Analysis
- Inlining

Interprocedural Parallelization

- Issues
- Same function reused many times
- Analyze a function on each trace \rightarrow Possibly exponential
- Analyze a function once \rightarrow unrealizable path problem
- Interprocedural Analysis
- Need to update all the analysis
- Complex analysis
- Can be expensive
- Inlining
- Works with existing analysis
- Large code bloat \rightarrow can be very expensive

HashSet h;
for $\mathrm{i}=1$ to n
int v = compute(i);
h.insert(i);

Are iterations independent?
Can you still execute the loop in parallel?
Do all parallel executions give same result?

Summary

- Multicores are here
- Need parallelism to keep the performance gains
- Programmer defined or compiler extracted parallelism
- Automatic parallelization of loops with arrays
- Requires Data Dependence Analysis
- Iteration space \& data space abstraction
- An integer programming problem
- Many optimizations that'll increase parallelism

