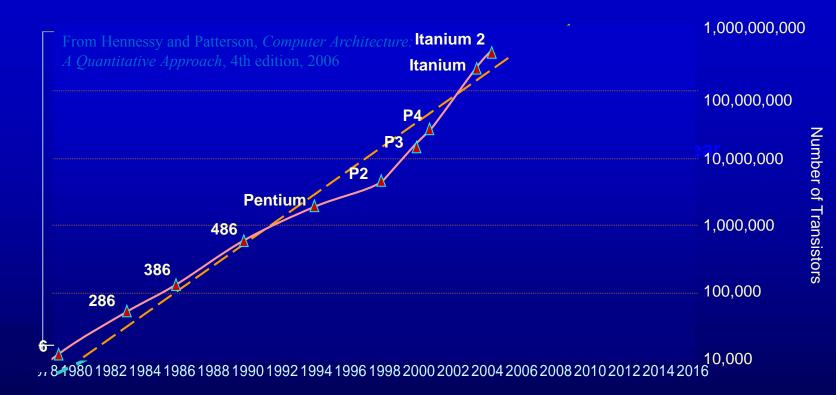


Parallelization

Outline

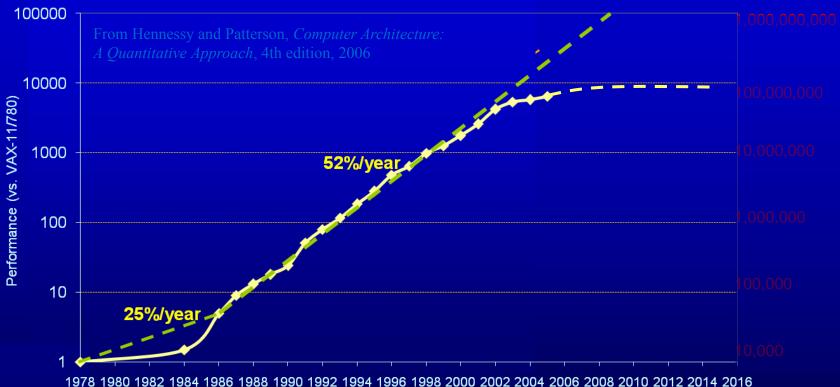
- Why Parallelism
- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities

Moore's Law



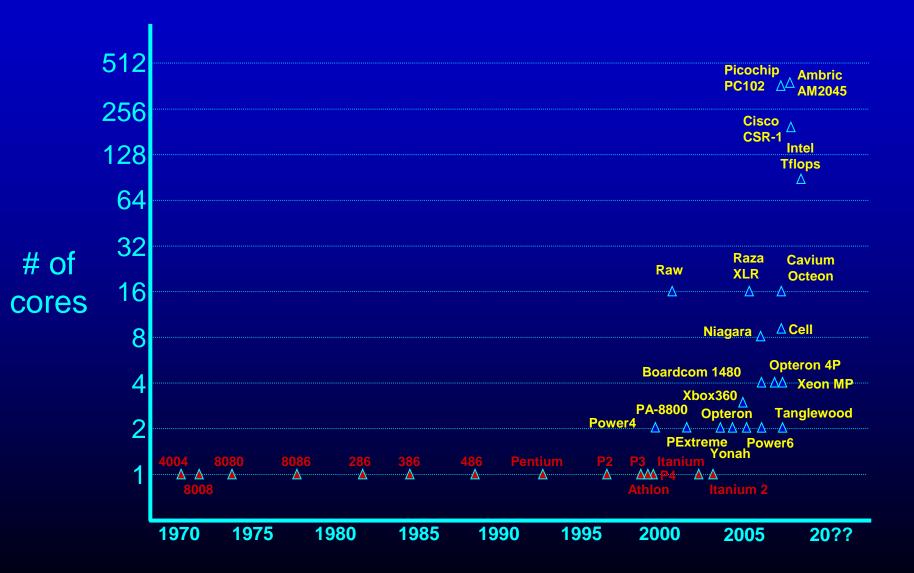
From David Patterson

Uniprocessor Performance (SPECint)



From David Patterson

Multicores Are Here!



Issues with Parallelism

- Amdhal's Law
 - Any computation can be analyzed in terms of a portion that must be executed sequentially, Ts, and a portion that can be executed in parallel, Tp. Then for n processors:
 - T(n) = Ts + Tp/n
 - $T(\infty) = Ts$, thus maximum speedup (Ts + Tp) /Ts
- Load Balancing
 - The work is distributed among processors so that *all* processors are kept busy when parallel task is executed.
- Granularity
 - The size of the parallel regions between synchronizations or the ratio of computation (useful work) to communication (overhead).

Outline

- Why Parallelism
- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities

Types of Parallelism

- Instruction Level Parallelism (ILP)
- Task Level Parallelism (TLP)

- \rightarrow Scheduling and Hardware
- \rightarrow Mainly by hand

- Loop Level Parallelism (LLP) or Data Parallelism
- Pipeline Parallelism
- Divide and Conquer
 Parallelism

- \rightarrow Hand or Compiler Generated
- \rightarrow Hardware or Streaming
- \rightarrow Recursive functions

Why Loops?

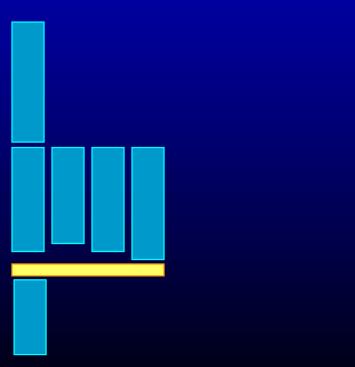
- 90% of the execution time in 10% of the code
 Mostly in loops
- If parallel, can get good performance
 Load balancing
- Relatively easy to analyze

Programmer Defined Parallel Loop

• FORALL

- No "loop carried dependences"
- Fully parallel

- FORACROSS
 - Some "loop carried dependences"



Parallel Execution

- SPMD (Single Program, Multiple Data) Code
 If (myPid == 0) {

```
...
Iters = ceiling(N/NUMPROC);
}
Barrier();
FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)
A[I] = A[I] + 1
Barrier();
```

Parallel Execution

- Example
 FORPAR I = 0 to N
 A[I] = A[I] + 1
- Block Distribution: Program gets mapped into Iters = ceiling (N/NUMPROC);

```
FOR P = 0 to NUMPROC-1
FOR I = P*Iters to MIN((P+1)*Iters, N)
A[I] = A[I] + 1
```

Code fork a function
 Iters = ceiling(N/NUMPROC);

```
FOR P = 0 to NUMPROC - 1 { ParallelExecute(func1, P); }
BARRIER(NUMPROC);
void func1(integer myPid)
{
   FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)
        A[I] = A[I] + 1
}
```

Parallel Thread Basics

- Create separate threads
 - Create an OS thread
 - (hopefully) it will be run on a separate core
 - pthread_create(&thr, NULL, &entry_point, NULL)
 - Overhead in thread creation
 - Create a separate stack
 - Get the OS to allocate a thread
- Thread pool
 - Create all the threads (= num cores) at the beginning
 - Keep N-1 idling on a barrier, while sequential execution
 - Get them to run parallel code by each executing a function
 - Back to the barrier when parallel region is done

Outline

- Why Parallelism
- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities

Parallelizing Compilers

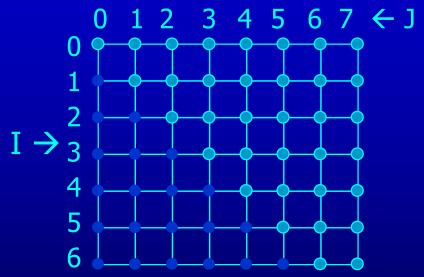
Finding FORALL Loops out of FOR loops

• Examples

FOR I = 0 to 5 A[I] = A[I] + 1FOR I = 0 to 5 A[I] = A[I+6] + 1For I = 0 to 5 A[2*I] = A[2*I + 1] + 1

- N deep loops \rightarrow N-dimensional discrete iteration space
 - Normalized loops: assume step size = 1

FOR I = 0 to 6 FOR J = I to 7

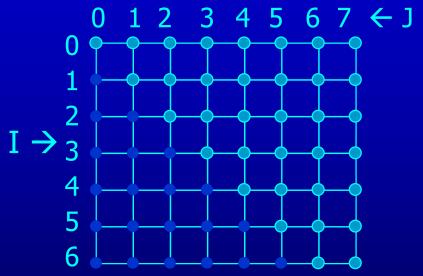


Iterations are represented as coordinates in iteration space
 - i = [i₁, i₂, i₃,..., i_n]

• N deep loops \rightarrow N-dimensional discrete iteration space

Normalized loops: assume step size = 1

FOR I = 0 to 6 FOR J = I to 7

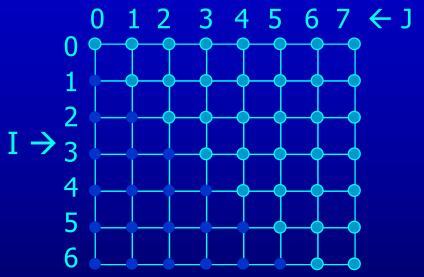


- Iterations are represented as coordinates in iteration space
- Sequential execution order of iterations → Lexicographic order
 [0,0], [0,1], [0,2], ..., [0,6], [0,7],
 [1,1], [1,2], ..., [1,6], [1,7],
 [2,2], ..., [2,6], [2,7],
 [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6], [2,2], ..., [2,6], [2,7],
 [2,2], ..., [2,6],

• N deep loops \rightarrow N-dimensional discrete iteration space

Normalized loops: assume step size = 1

FOR I = 0 to 6 FOR J = I to 7

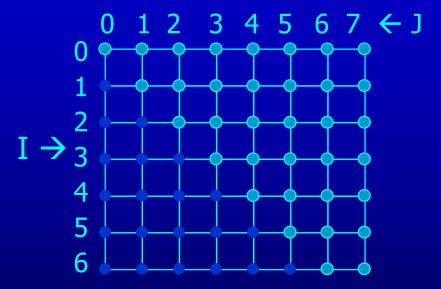


- Iterations are represented as coordinates in iteration space
- Sequential execution order of iterations → Lexicographic order
- Iteration i is lexicograpically less than j, i < j iff there exists c s.t. i₁ = j₁, i₂ = j₂,... i_{c-1} = j_{c-1} and i_c < j_c

• N deep loops \rightarrow N-dimensional discrete iteration space

Normalized loops: assume step size = 1

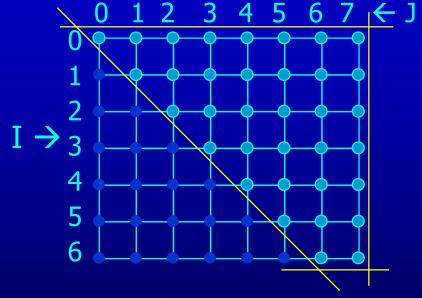
FOR I = 0 to 6 FOR J = I to 7



- An affine loop nest
 - Loop bounds are integer linear functions of constants, loop constant variables and outer loop indexes
 - Array accesses are integer linear functions of constants, loop constant variables and loop indexes

- N deep loops \rightarrow N-dimensional discrete iteration space
 - Normalized loops: assume step size = 1

FOR I = 0 to 6 FOR J = I to 7



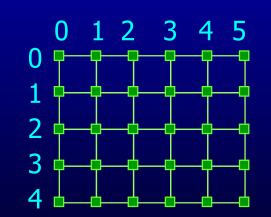
 Affine loop nest → Iteration space as a set of linear inequalities
 0 ≤ I
 I ≤ 6
 I ≤ J
 _ J ≤ 7

Data Space

M dimensional arrays → M-dimensional discrete cartesian space
 a hypercube

Integer A(10)	0	1	2	3	4	5	6	7	8	9
	— —									

Float B(5, 6)



Dependences

- True dependence
 - = = a

a

- Anti dependence
 - = a a =
- Output dependence
 - a = a =
- Definition:

Data dependence exists for a dynamic instance i and j iff

- either i or j is a write operation
- i and j refer to the same variable
- i executes before j
- How about array accesses within loops?

Outline

- Why Parallelism
- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities

Array Accesses in a loop

FOR I = 0 to 5

A[I] = A[I] + 1

Data Space 0 1 2 3 4 5 6 7 8 9 10 1112

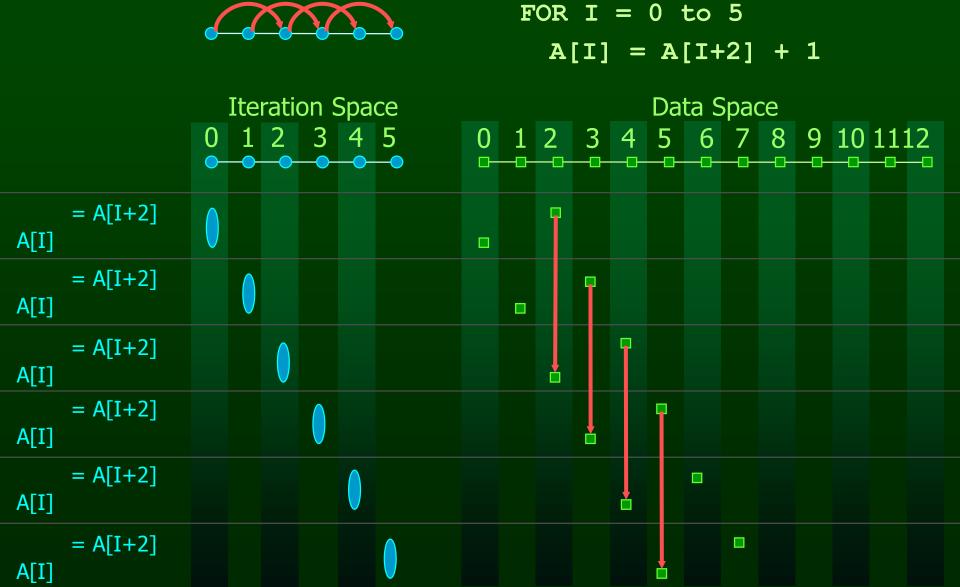
Array Accesses in a loop FOR I = 0 to 5

A[I] = A[I] + 1

	Iteration Space									Data Space											
	0	1	2	3	4	5	0 □-	1	2	3	4	5	6 	7	8	9	10 	11:			
= A[I] A[I]							1														
= A[I] A[I]																					
= A[I] A[I]																					
= A[I] A[I]										1											
= A[I] A[I]																					
= A[I] A[I]																					

Array Accesses in a loop																					
								FOR I = 0 to 5 A[I+1] = A[I] + 1													
	Iteration Space							Data Space													
	0	1 2	3		5	0 □-	1	2	3	4		6 			9	10	111	.2 			
= A[I] A[I+1]							7														
= A[I] A[I+1]																					
= A[I] A[I+1]								Å	7												
= A[I] A[I+1]									`	7											
= A[I] A[I+1]										ľ											
= A[I] A[I+1]																					

Array Accesses in a loop



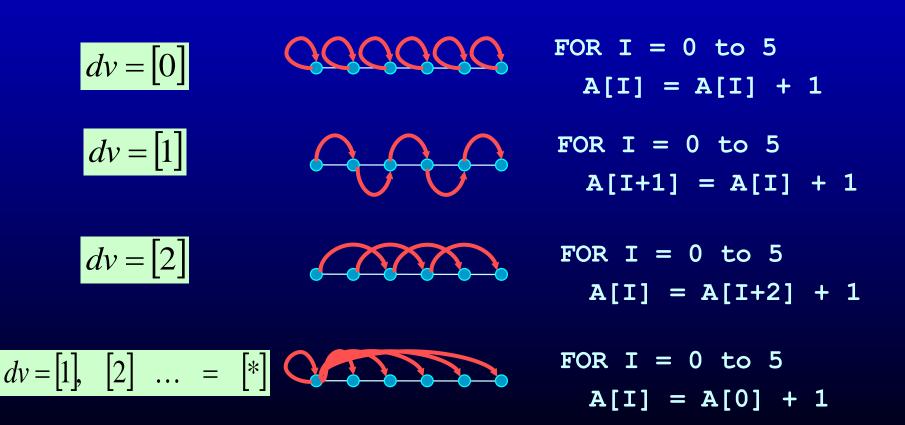
Array Accesses in a loop

FOR I = 0 to 5

A[2*I] = A[2*I+1] + 1

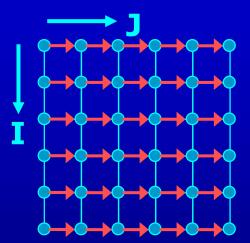
Distance Vectors

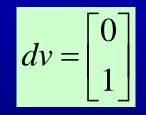
 A loop has a distance d if there exist a data dependence from iteration i to j and d = j-i



Multi-Dimensional Dependence

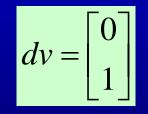
FOR I = 1 to n
FOR J = 1 to n
$$A[I, J] = A[I, J-1] + 1$$



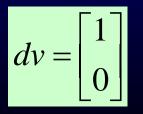


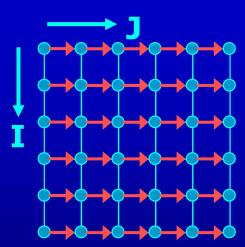
Multi-Dimensional Dependence

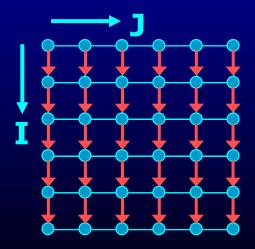
FOR I = 1 to n
FOR J = 1 to n
$$A[I, J] = A[I, J-1] + 1$$



FOR I = 1 to n
FOR J = 1 to n
$$A[I, J] = A[I+1, J] + 1$$

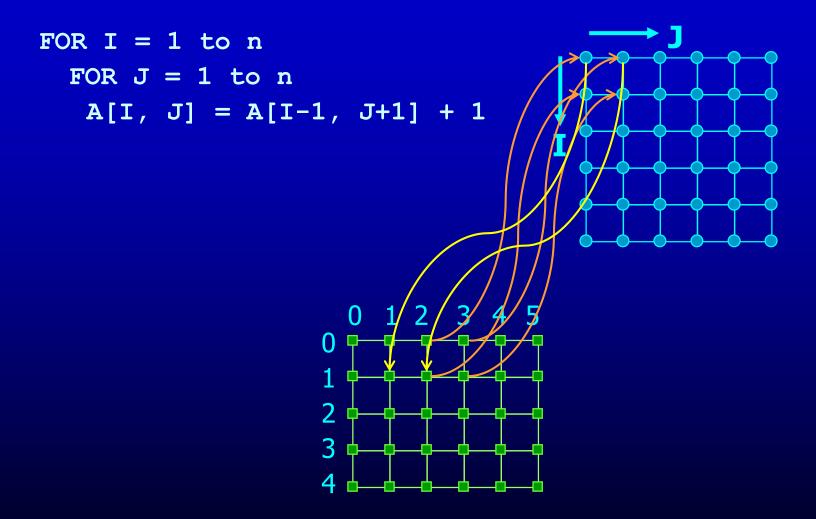


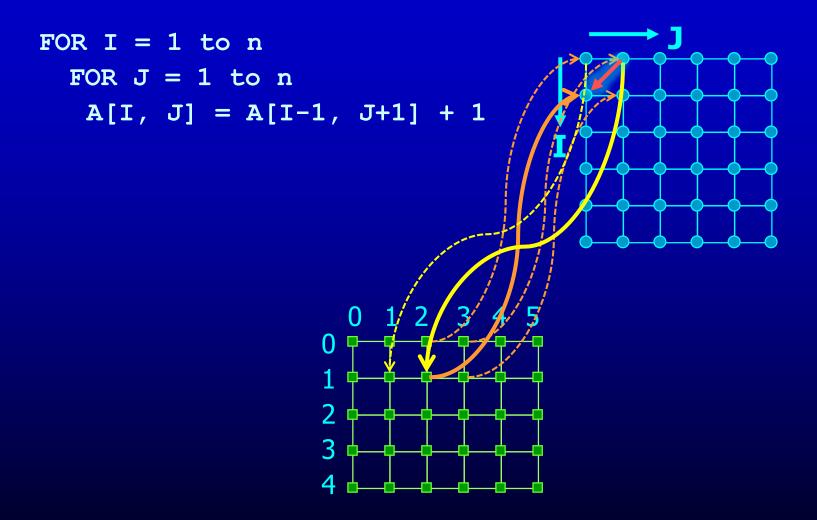




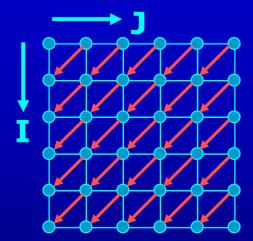
Outline

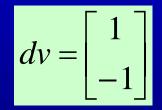
- Dependence Analysis
- Increasing Parallelization Opportunities



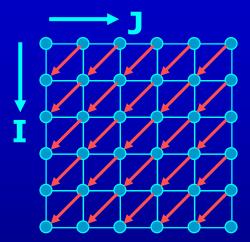


FOR I = 1 to n FOR J = 1 to n A[I, J] = A[I-1, J+1] + 1

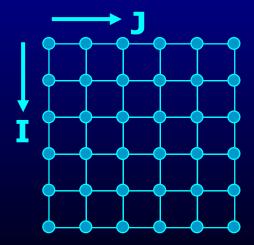




FOR I = 1 to n FOR J = 1 to n A[I, J] = A[I-1, J+1] + 1

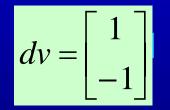


FOR I = 1 to n FOR J = 1 to n B[I] = B[I-1] + 1



What is the Dependence?

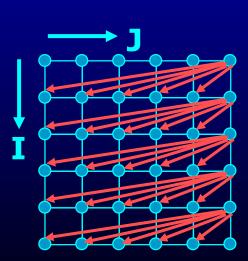
FOR I = 1 to n
FOR J = 1 to n
$$A[I, J] = A[I-1, J+1] + 1$$

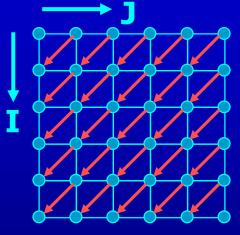


FOR I = 1 to n
FOR J = 1 to n

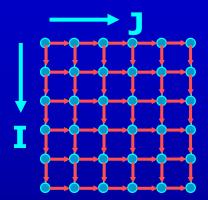
$$B[I] = B[I-1] + 1$$

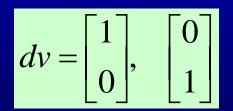
$$dv = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ -3 \end{bmatrix}, \dots = \begin{bmatrix} 1 \\ * \end{bmatrix}$$





What is the Dependence?





Recognizing FORALL Loops

- Find data dependences in loop
 - For every pair of array acceses to the same array
 - If the first access has at least one dynamic instance (an iteration) in which it refers to a location in the array that the second access also refers to in at least one of the later dynamic instances (iterations).
 - Then there is a data dependence between the statements
 - (Note that same array can refer to itself output dependences)
- Definition
 - Loop-carried dependence: dependence that crosses a loop boundary
- If there are no loop carried dependences \rightarrow parallelizable

Data Dependence Analysis

- I: Distance Vector method
- II: Integer Programming

Distance Vector Method

• The ith loop is parallelizable for all dependence $d = [d_1, ..., d_i, ...d_n]$ either one of $d_1, ..., d_{i-1}$ is > 0 or

all $d_1, ..., d_i = 0$

Is the Loop Parallelizable?

dv = [0]	Yes	Q			
		Ŭ	Ŭ	 Ŭ	

No

FOR I = 0 to 5 A[I] = A[I] + 1

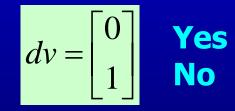
$dv = \begin{bmatrix} 1 \end{bmatrix}$	No	$\bigcap \bigcap \bigcap$	FOR I = 0 to 5 A[I+1] = A[I] + 1		
			A[I+1] = A[I] + 1		

dv = [2]	No		FOR $I = 0$ to 5			
			A[I] = A[I+2] + 1			

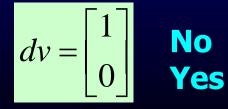
FOR I	= 0	to	5	
A[I]	= 1	A[0]	+	1

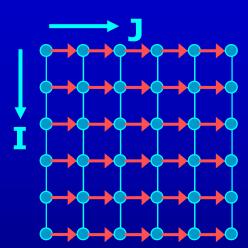
Are the Loops Parallelizable?

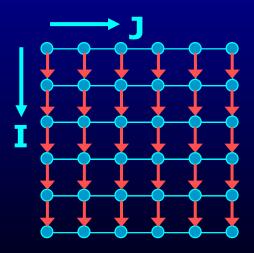
FOR I = 1 to n
FOR J = 1 to n
$$A[I, J] = A[I, J-1] + 1$$



FOR I = 1 to n
FOR J = 1 to n
$$A[I, J] = A[I+1, J] + 1$$

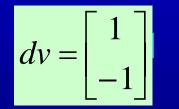




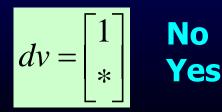


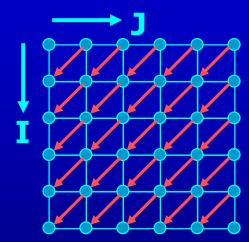
Are the Loops Parallelizable?

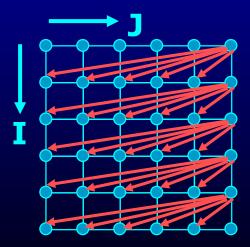
FOR I = 1 to n
FOR J = 1 to n
$$A[I, J] = A[I-1, J+1] + 1$$



FOR I = 1 to n
FOR J = 1 to n
$$B[I] = B[I-1] + 1$$







Integer Programming Method

Example
 FOR I = 0 to 5

 A[I+1] = A[I] + 1

Is there a loop-carried dependence between A[I+1] and A[I]

– Are there two distinct iterations $i_{\rm w}$ and $i_{\rm r}$ such that A[i_w+1] is the same location as A[i_r]

 $- \exists \text{ integers } i_w, i_r \quad 0 \leq i_w, i_r \leq 5 \quad i_w \neq i_r \quad i_w + 1 = i_r$

- Is there a dependence between A[I+1] and A[I+1]
 - Are there two distinct iterations i_1 and i_2 such that A[i_1 +1] is the same location as A[i_2 +1]
 - ∃ integers i_1 , i_2 0 ≤ i_1 , i_2 ≤ 5 $i_1 \neq i_2$ i_1 + 1 = i_2 +1

Integer Programming Method

FOR I = 0 to 5

A[I+1] = A[I] + 1

- Formulation
 - $\exists an integer vector ⊤ such that <math>\hat{A} \top \le \overline{b}$ where \hat{A} is an integer matrix and \overline{b} is an integer vector

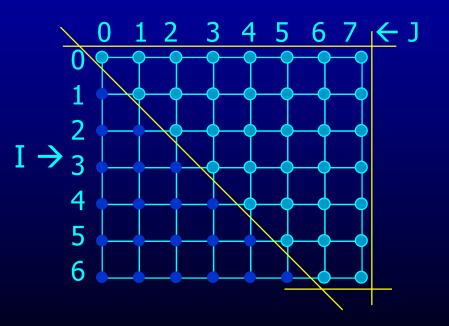
Iteration Space

FOR I = 0 to 5 A[I+1] = A[I] + 1

 N deep loops → n-dimensional discrete cartesian space

Affine loop nest → Iteration space as a set of linear inequalities

 0 ≤ I
 I ≤ 6
 I ≤ 1
 J ≤ 7



Integer Programming Method

FOR I = 0 to 5 A[I+1] = A[I] + 1

- Formulation
 - $\exists an integer vector ⊤ such that <math>\hat{A} ⊤ ≤ \overline{b}$ where \hat{A} is an integer matrix and \overline{b} is an integer vector
- Our problem formulation for A[i] and A[i+1]
 - $\exists \text{ integers } i_w, \, i_r \quad 0 \leq i_w, \, i_r \leq 5 \ i_w \neq \ i_r \ i_w + 1 = \ i_r$
 - $-i_w \neq i_r$ is not an affine function
 - divide into 2 problems
 - Problem 1 with $i_w < i_r$ and problem 2 with $i_r < i_w$
 - If either problem has a solution \rightarrow there exists a dependence
 - How about $i_w + 1 = i_r$
 - Add two inequalities to single problem $i_w + 1 \le i_r$, and $i_r \le i_w + 1$

Integer Programming Formulation

FOR I = 0 to 5 A[I+1] = A[I] + 1

- Problem 1
 - $\begin{array}{l} 0 \leq i_{w} \\ i_{w} \leq 5 \\ 0 \leq i_{r} \\ i_{r} \leq 5 \\ i_{w} \leq i_{r} \\ i_{w} + 1 \leq i_{r} \\ i_{w} + 1 \leq i_{r} \\ i_{r} \leq i_{w} + 1 \end{array}$

Integer Programming Formulation

• Problem 1

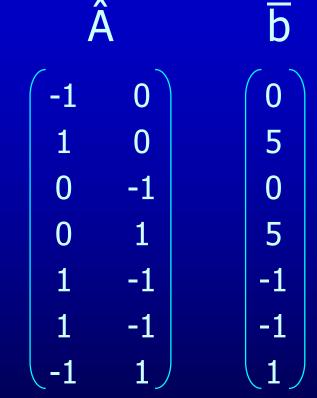
FOR I = 0 to 5 A[I+1] = A[I] + 1

 $0 \leq i_w$ \rightarrow $-i_w \leq 0$ $i_w \leq 5 \rightarrow$ $i_w \leq 5$ \rightarrow $0 \leq i_r$ $-i_r \leq 0$ \rightarrow $i_r \leq 5$ $i_r \leq 5$ \rightarrow $i_w < i_r$ $i_w - i_r \leq -1$ \rightarrow $i_w - i_r \leq -1$ $i_w + 1 \leq i_r$ \rightarrow $i_r \leq i_w + 1$ $-i_w + i_r \leq 1$

Integer Programming Formulation

• Problem 1

$0 \le i_w$	\rightarrow	$-i_w \le 0$
$i_w \le 5$	\rightarrow	$i_w \le 5$
$0 \leq i_r$	\rightarrow	$-i_r \le 0$
i _r ≤ 5	\rightarrow	i _r ≤ 5
i _w < i _r	\rightarrow	$i_w - i_r \le -1$
$i_w + 1 \le i_r$	\rightarrow	$i_w - i_r \le -1$
$i_r \leq i_w + 1$	\rightarrow	$-i_w + i_r \le 1$



b

• and problem 2 with $i_r < i_w$

Generalization

• An affine loop nest FOR $i_1 = f_{11}(c_1...c_k)$ to $I_{u1}(c_1...c_k)$ FOR $i_2 = f_{12}(i_1, c_1...c_k)$ to $I_{u2}(i_1, c_1...c_k)$ FOR $i_n = f_{1n}(i_1...i_{n-1}, c_1...c_k)$ to $I_{un}(i_1...i_{n-1}, c_1...c_k)$ $A[f_{a1}(i_1...i_n, c_1...c_k), f_{a2}(i_1...i_n, c_1...c_k), ..., f_{am}(i_1...i_n, c_1...c_k)]$

Solve 2*n problems of the form

•
$$i_1 = j_1$$
, $i_2 = j_2$, $i_{n-1} = j_{n-1}$, $i_n < j_n$
• $i_1 = j_1$, $i_2 = j_2$, $i_{n-1} = j_{n-1}$, $j_n < i_n$
• $i_1 = j_1$, $i_2 = j_2$, $i_{n-1} < j_{n-1}$
• $i_1 = j_1$, $i_2 = j_2$, $j_{n-1} < i_{n-1}$

•
$$i_1 = j_1, i_2 < j_1$$

• $i_1 = j_1, j_2 < i_1$
• $i_1 < j_1$

• j₁ < i₁

Outline

- Why Parallelism
- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis

Increasing Parallelization Opportunities

Increasing Parallelization Opportunities

- Scalar Privatization
- Reduction Recognition
- Induction Variable Identification
- Array Privatization
- Loop Transformations
- Granularity of Parallelism
- Interprocedural Parallelization

Scalar Privatization

Example

- FOR i = 1 to n
 X = A[i] * 3;
 B[i] = X;
- Is there a loop carried dependence?
- What is the type of dependence?

Privatization

- Analysis:
 - Any anti- and output- loop-carried dependences
- Eliminate by assigning in local context
 - FOR i = 1 to n
 integer Xtmp;
 Xtmp = A[i] * 3;
 B[i] = Xtmp;
- Eliminate by expanding into an array
 FOR i = 1 to n
 Xtmp[i] = A[i] * 3;
 B[i] = Xtmp[i];

Privatization

- Need a final assignment to maintain the correct value after the loop nest
- Eliminate by assigning in local context

```
FOR i = 1 to n
integer Xtmp;
Xtmp = A[i] * 3;
B[i] = Xtmp;
if(i == n) X = Xtmp
```

• Eliminate by expanding into an array

```
FOR i = 1 to n
   Xtmp[i] = A[i] * 3;
   B[i] = Xtmp[i];
X = Xtmp[n];
```

Another Example

- How about loop-carried true dependences?
- Example
 - FOR i = 1 to n
 - X = X + A[i];
- Is this loop parallelizable?

Reduction Recognition

• Reduction Analysis:

- Only associative operations
- The result is never used within the loop

Transformation

...

```
Integer Xtmp[NUMPROC];
Barrier();
FOR i = myPid*Iters to MIN((myPid+1)*Iters, n)
    Xtmp[myPid] = Xtmp[myPid] + A[i];
Barrier();
If(myPid == 0) {
    FOR p = 0 to NUMPROC-1
        X = X + Xtmp[p];
```

Induction Variables

• Example

FOR i = 0 to N

 $A[i] = 2^{i};$

After strength reduction

t = 1

FOR
$$i = 0$$
 to N

A[i] = t;

t = t * 2;

- What happened to loop carried dependences?
- Need to do opposite of this!
 - Perform induction variable analysis
 - Rewrite IVs as a function of the loop variable

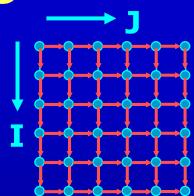
Array Privatization

- Similar to scalar privatization
- However, analysis is more complex
 - Array Data Dependence Analysis: Checks if two iterations access the same location
 - Array Data Flow Analysis:
 Checks if two iterations access the same value
- Transformations
 - Similar to scalar privatization
 - Private copy for each processor or expand with an additional dimension

Loop Transformations

- A loop may not be parallel as is
- Example

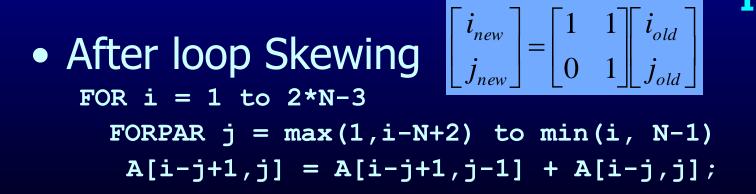
FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,j] = A[i,j-1] + A[i-1,j];

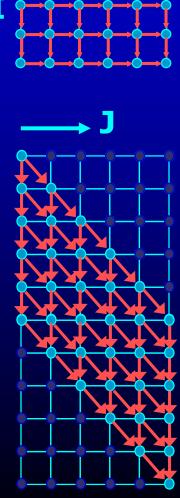


Loop Transformations

- A loop may not be parallel as is
- Example

FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,j] = A[i,j-1] + A[i-1,j];





Granularity of Parallelism

• Example

FOR i = 1 to N-1 FOR j = 1 to N-1 A[i,j] = A[i,j] + A[i-1,j];

Gets transformed into

```
FOR i = 1 to N-1
Barrier();
FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)
A[i,j] = A[i,j] + A[i-1,j];
Barrier();
```

- Inner loop parallelism can be expensive
 - Startup and teardown overhead of parallel regions
 - Lot of synchronization
 - Can even lead to slowdowns

Granularity of Parallelism

Inner loop parallelism can be expensive

Solutions

- Don't parallelize if the amount of work within the loop is too small
- or
- Transform into outer-loop parallelism

Outer Loop Parallelism

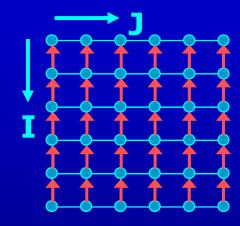
• Example

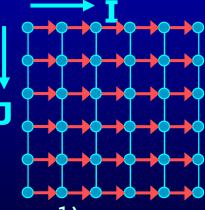
FOR i = 1 to N-1 FOR j = 1 to N-1 A[i,j] = A[i,j] + A[i-1,j];

After Loop Transpose
 FOR j = 1 to N-1
 FOR i = 1 to N-1

A[i,j] = A[i,j] + A[i-1,j];

• Get mapped into





Unimodular Transformations

- Interchange, reverse and skew
- Use a matrix transformation $I_{new} = A I_{old}$
- Interchange

$$\begin{bmatrix} i_{new} \\ j_{new} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} i_{old} \\ j_{old} \end{bmatrix}$$

• Reverse

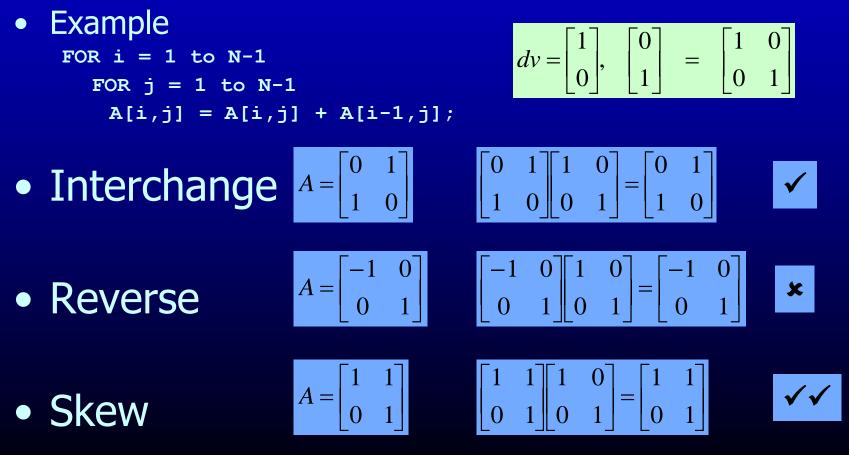
Skew

$$\begin{bmatrix} i_{new} \\ j_{new} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i_{old} \\ j_{old} \end{bmatrix}$$

$$\begin{bmatrix} i_{new} \\ j_{new} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i_{old} \\ j_{old} \end{bmatrix}$$

Legality of Transformations

 Unimodular transformation with matrix A is valid iff.
 For all dependence vectors v the first non-zero in Av is positive



Interprocedural Parallelization

- Function calls will make a loop unparallelizatble
 - Reduction of available parallelism
 - A lot of inner-loop parallelism
- Solutions
 - Interprocedural Analysis
 - Inlining

Interprocedural Parallelization

Issues

- Same function reused many times
- Analyze a function on each trace \rightarrow Possibly exponential
- Analyze a function once \rightarrow unrealizable path problem

• Interprocedural Analysis

- Need to update all the analysis
- Complex analysis
- Can be expensive

Inlining

- Works with existing analysis
- Large code bloat \rightarrow can be very expensive

HashSet h; for i = 1 to n int v = compute(i); h.insert(i);

> Are iterations independent? Can you still execute the loop in parallel? Do all parallel executions give same result?

Summary

- Multicores are here
 - Need parallelism to keep the performance gains
 - Programmer defined or compiler extracted parallelism
- Automatic parallelization of loops with arrays
 - Requires Data Dependence Analysis
 - Iteration space & data space abstraction
 - An integer programming problem
- Many optimizations that'll increase parallelism