Parallelization

Outline

e Why Parallelism
e Parallel Execution

e Parallelizing Compilers

e Dependence Analysis

e Increasing Parallelization Opportunities

Moore’s Law

1,000,000,000

B Itanium 2
[tanium 7
iu K
100,000,000
P4~
yd
P3
45/ 10,000,000
_ 2
Pentiu/m/
486 1,000,000
/2
7
100,000
10,000

;849801982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Sslojsisuel] JO JsquinN

Uniprocessor Performance (SPECint)

100000

10000

1000

100

Performance (vs. VAX-11/780)

10

1

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

512
256
128
64
32
16

of
cores

Multicores Are Herel!

Picochip Ambri
PC102 AA Amz(;f5
Cisco
CSR-lA
Intel
Tflops
A
Raza Cavium
Raw XLR Octeon
A A ,,,,,,,,, A
Niagara A ACell
Opteron 4P
Boardcom 1480
AAAXGOT'IMP 44444444
Xbox360
PA-8800 Opteron Tanglewood
POWEIA A e AN AN A
PExtreme Power6
Yonah
,,,,,,,,,, AAA A A A A A AM >/ AA
1970 1975 1980 1985 1990 1995 2000 2005 20?7?

Issues with Parallelism

e Amdhal’s Law

— Any computation can be analyzed in terms of a portion that
must be executed sequentially, Ts, and a portion that can be
executed in parallel, Tp. Then for n processors:

— T(n) =Ts + Tp/n
— T(ew) = Ts, thus maximum speedup (Ts + Tp) /Ts

e Load Balancing

— The work is distributed among processors so that a/f processors
are kept busy when parallel task is executed.

e Granularity

— The size of the parallel regions between synchronizations or
the ratio of computation (useful work) to communication
(overhead).

Outline

e Parallel Execution

e Parallelizing Compilers

e Dependence Analysis

e Increasing Parallelization Opportunities

Types of Parallelism

Instruction Level
Parallelism (ILP)

Task Level Parallelism
(TLP)

- Scheduling and Hardware

- Mainly by hand

Loop Level Parallelism
(LLP) or Data Parallelism

- Hand or Compiler Generated

Pipeline Parallelism

Divide and Conquer
Parallelism

- Hardware or Streaming

- Recursive functions

Why Loops?

e 90% of the execution time in 10% of the code
— Mostly in loops

e If parallel, can get good performance
— Load balancing

e Relatively easy to analyze

Programmer Defined Parallel Loop

e FORALL e FORACROSS
— No “loop carried — Some “loop carried
dependences” dependences”
— Fully parallel

l i
] ‘t,
] __§

Parallel Execution

e Example
FORPAR I = 0 to N
A[I] = A[I] + 1

e Block Distribution: Program gets mapped into
Iters = ceiling (N/NUMPROC) ;
FOR P = 0 to NUMPROC-1
FOR I = P*Iters to MIN((P+1l)*Iters, N)
A[I] = A[I] + 1

e SPMD (Single Program, Multiple Data) Code

If (myPid == 0) {

Iters = ceiling (N/NUMPROC) ;

}

Barrier() ;

FOR I = myPid*Iters to MIN((myPid+1l) *Iters, N)
A[I] = A[I] + 1

Barrier () ;

Parallel Execution

e Example

FORPAR I = 0 to N
A[I] = A[I] + 1

e Block Distribution: Program gets mapped into
Iters = ceiling (N/NUMPROC) ;

FOR P = 0 to NUMPROC-1
FOR I = P*Iters to MIN((P+1l)*Iters, N)
A[I] = A[I] + 1

e Code fork a function
Iters = ceiling (N/NUMPROC) ;
FOR P = 0 to NUMPROC - 1 { ParallelExecute(funcl, P); }
BARRIER (NUMPROC) ;
void funcl (integer myPid)

{
FOR I = myPid*Iters to MIN((myPid+1l) *Iters, N)

A[I] = A[I] + 1

Parallel Thread Basics

e Create separate threads

— Create an OS thread
e (hopefully) it will be run on a separate core
— pthread_create(&thr, NULL, &entry_point, NULL)

— QOverhead in thread creation
e Create a separate stack
e Get the OS to allocate a thread

e Thread pool
— Create all the threads (= num cores) at the beginning
— Keep N-1 idling on a barrier, while sequential execution

— Get them to run parallel code by each executing a
function

— Back to the barrier when parallel region is done

Outline

e Parallelizing Compilers
e Dependence Analysis

e Increasing Parallelization Opportunities

Parallelizing Compilers

e Finding FORALL Loops out of FOR loops

e Examples
FOR I = 0 to 5
A[I] = A[I] + 1

FOR I =0 to 5
A[I] = A[I+6] + 1

For I = 0 to 5
A[2*I] = A[2*I + 1] + 1

Iteration Space

e N deep loops > N-dimensional discrete iteration space
— Normalized loops: assume step size = 1

012 34567 <]
FOR I = 0 to 6

FOR J = I to 7

o Iterations are represented as coordinates in iteration space
- I = [Ill |21 I3/ I]

Iteration Space

e N deep loops > N-dimensional discrete iteration space
— Normalized loops: assume step size = 1

012 34567 <]
FOR I = 0 to 6

FOR J = I to 7

e Iterations are represented as coordinates in iteration space

e Sequential execution order of iterations = Lexicographic order
[OIO]I [Oll]l [0,2], Y 4 [016]1 [017]1
[111]1 [1I2]I Y 4 [116]1 [117]1
[212]1 R 4 [216]1 [217]1

[6,6], [6,7],

Iteration Space

e N deep loops > N-dimensional discrete iteration space
— Normalized loops: assume step size = 1

012 34567 <]

FOR I = 0 to 6 0
FOR J =1I to 7 1 O—O—O—O—O—0O—0
2 O—O—O—O0—0—0
I-> 3 —0—0—0—0
4 O—0—0—0
5 o—0—0
6 oo

e Iterations are represented as coordinates in iteration space
° Sequential execution order of iterations =» Lexicographic order

o Iterationi is lexicograpically less thanJ i<7 iff
there exists c s.t. iy = jy, iy = Jy,-- ey = Joop @Nd i < e

Iteration Space

e N deep loops > N-dimensional discrete iteration space
— Normalized loops: assume step size = 1

012 34567 <]
FOR I = 0 to 6

FOR J = I to 7

e An affine loop nest

— Loop bounds are integer linear functions of constants, loop constant
variables and outer loop indexes

— Array accesses are integer linear functions of constants, loop constant
variables and loop indexes

Iteration Space

e N deep loops > N-dimensional discrete iteration space
— Normalized loops: assume step size = 1

012 345617,

FOR I = 0 to 6
FOR J = I to 7

o Affine loop nest > Iteration space as a set of linear inequalities
0<1I
I<6
I1<]
J<7

Data Space

e M dimensional arrays 2> M-dimensional discrete cartesian space
— a hypercube

Integer A(10) 012 3 4
[, o, o, o, o,

o Ul
H o
B~
B 00

O

Float B(5, 6)

0—0—0—0 O
Il Il Il F
= | S) = =
il 7l
- =
| 7l
o |) =]
il Fl 7l
o |) =]
b—o—o—un VUl

&
7
—
|
—

3
b
—

=

Dependences

True dependence
a

a

Anti dependence
a

a

Output dependence
a =
a

Definition:

Data dependence exists for a dynamic instance i and j iff
— either i or j is a write operation
— iand j refer to the same variable
— i executes before j

How about array accesses within loops?

Outline

e Why Parallelism

e Parallel Execution
e Parallelizing Compilers
e Dependence Analysis

e Increasing Parallelization Opportunities

Array Accesses in a loop

FOR I =0 to 5
A[I] = A[I] + 1

n Space Data Space
012 3 45 012 345 / 8 9 101112
e—0—0 000 o—o—o—0 O0—0O—0—0

O— 4—

HNe))

A[T]

A[T]

A[T]

A[T]

A[l]

A[T]

= A[I]

= A[I]

= A[I]

= A[I]

= A[I]

= A[I]

Array Accesses in a loop
QQQAQQAQ

Iteration Space

01

2 3

4 5

- |

o—0

FOR I = 0 to 5
A[I] = A[I] + 1

Data Space
012 345 6 7 8 9101112

A[I+1]

A[I+1]

A[I+1]

A[I+1]

A[I+1]

A[I+1]

= A[I]

= A[I]

= A[I]

= A[1]

= A[I]

= A[I]

Array Accesses in a loop

FOR I = 0 to 5
A[I+1] = A[I] + 1
Iteration Space Data Spac
0 12 3 45

01

0—O0 o—o
O

Z

A[T]

A[T]

A[T]

A[T]

A[T]

A[T]

= A[I+2]

= A[I+2]

= A[I+2]

= A[I+2]

= A[1+2]

= A[I+2]

Array Accesses in a loop
LD

Iteration Space

01

2 3

4 5

o—0

- |

FOR I = 0 to 5

0 12
O— %
5 N

O
O

A[I] = A[I+2] + 1
Data Space
345 6 7 8 9101112
{1 {} {1 {1 {1 i, —1——
[
Ll
1

Array Accesses in a loop

FOR I = 0 to 5

A[2*I] = A[2*I+1] + 1
Iteration Space Data Space
0 12 3 45 012 345 6 7 8 9101112
o—0——0—0—0—0 OH— {1 {1 {1 i o, i {1 —t —1
= A[2*I+1] O O
A[2*1] 0
= A[2*I+1] O O
A[2*]] m
= A[2*I+1] O -
A[2*1] O
= A[2*I+1] O O
A[2*]] m
= A[2*I+1] O O
A[2*I] O
= A[2*I+1] O 0
A[2*1] O

Distance Vectors

e A loop has a distance d if there exist a data
dependence from iteration i to j and d = j-i

e QQQQQQ FeRI-otes

A[I] = A[I] + 1

dv =1 N\ FOR I = 0 to 5
v =1] S

A[I+1] = A[I] + 1

dv:[z] (IIT), FORI=0tos

A[I] = A[I+2] + 1

Qm FOR I = 0 to 5

A[I] = A[0] + 1

Multi-Dimensional Dependence

FOR I =1 to n
FOR J =1 to n
A[I, J] = A[I, J-1] + 1

-

Multi-Dimensional Dependence

FOR I =1 to n —]

FOR J =1 to n l
I

A[I, J] = A[I, J-1] + 1

O—>O—POPOHOHO
000000
B
dv = >0)0 >0 00
ﬁJ
FOR I =1 ton
FOR J =1 ton l
A[I, J] = A[I+1, J] + 1 T

oy

Outline

e Dependence Analysis
e Increasing Parallelization Opportunities

What is the Dependence?

FOR I =1 to n —]

FOR J =1 to n

A[I, J] = A[I-1, J+1] + 1

What is the Dependence?

_>J

=1 to n

FOR I

=1 ton

FOR J

J] = A[I-1, J+1] + 1

A[I,

What is the Dependence?

FOR I =1 to n
FOR J =1 to n
A[I, J] = A[I-1, J+1] + 1

What is the Dependence?

FOR I =1 to n —]

FOR J =1 ton l./.
|

A[I, J] = A[I-1, J+1] + 1

727

_>J
FOR I = 1 to n T 9
FOR J = 1 to n l“""
B[I] = B[I-1] + 1 17777
O—O——0O——0O——0——=0
oO—O—0O0—0O0—0——=0
o—O0——0O—0——~0O—-o0

the Dependence?

IS

What

=1 ton
FOR J =1 to n

FOR I

J+1] + 1

= A[I-1,

y J1]

I

[

A

ANINNNN
NIV

e
Y

=1 ton
FOR J =1 to n
B[I] = B[I-1] + 1

FOR I

What is the Dependence?

FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,j] = A[1,]3-1] + A[i-1,3];

Recognizing FORALL Loops

e Find data dependences in loop
— For every pair of array acceses to the same array

If the first access has at least one dynamic instance (an iteration)
in which it refers to a location in the array that the second access
also refers to in at least one of the later dynamic instances

(iterations).
Then there is a data dependence between the statements

— (Note that same array can refer to itself — output dependences)

e Definition

— Loop-carried dependence:
dependence that crosses a loop boundary

o If there are no loop carried dependences - parallelizable

Data Dependence Analysis

e I: Distance Vector method
e II: Integer Programming

Distance Vector Method

e The it" loop is parallelizable for all
dependence d = [d;,...,d;,..d,]
either

one of dq,...,d._1is > O
or
all dy,...,d, =0

Is the Loop Parallelizable?

MEE ves QQOQQQL FRT =0 oS

A[I] = A[I] + 1

dv =[1 N N FOR I = 0 to 5
v=[1] 0 Q\JU&

A[I+1] = A[I] + 1

dv = 2] No (TITS), FORI=0tos

A[I] = A[I+2] + 1

ﬁ?» FOR I =0 to 5
No o—0o—0—0o °

A[I] = A[0] + 1

Are the Loops Parallelizable?

FOR I =1 to n
FOR J =1 to n l
A[I, J] = A[I, J-1] + 1

O—O—O0—O0—HO—O
No

d{

FOR I =1 ton l
|

}) (=15 T

FOR J =1 to n
A[I, J] = A[I+1, J] + 1

No
Yes

o

Are the Loops Parallelizable?

FOR I =1 to n —]
FOR J =1 to n
A[I, J] = A[I-1, J+1] + 1

N

\'[o)
Yes

N

_>J
FOR I =1 to n l Z?Z‘
FOR J =1 toln . %gg
. Ml No i;g
V=1 | S =

Integer Programming Method

e Example
FOR I = 0 to 5
A[I+1] = A[I] + 1

e Is there a loop-carried dependence between A[I+1] and A[I]

— Are there two distinct iterations i, and i. such that A[i,+1] is the
same location as A[i,]

— Jintegersi,, i. 0<i,i,<5 i,z i i,+1=1i

e Is there a dependence between A[I+1] and A[I+1]

— Are there two distinct iterations i; and i, such that A[i;+1] is the
same location as A[i,+1]

— Jintegersi, i, 0<i,L,<5 =1 §K+1=i+1

Integer Programming Method

FOR I = 0 to 5

) A[I+1l] = A[I] + 1
e Formulation

— 3 an integer vector T such that AT <b where
A is an integer matrix and b is an integer vector

Iteration Space

FOR I = 0 to 5

A[I+1] = A[I] + 1
e N deep loops - n-dimensional
discrete cartesian space
012 34567
e Affine loop nest > Iteration OK' T T
space as a set of linear 1 \’\° —0—6—0—0
inequalities p Q—O—O—O—0—0
0<I 23 \\o O—O—0—0
I1<6 4 \\o o—0—©
I<] 5 \\. o—o
1<7 6 oo

Integer Programming Method

FOR I = 0 to 5

. A[I+1l] = A[I] + 1
e Formulation

— 3 an integer vector T such that AT <b where
A is an integer matrix and b is an integer vector

e Our problem formulation for A[i] and A[i+1]
— Jintegersi,, i. 0<i, i, <5 i, I i,+1= 1
— I, # I is not an affine function
e divide into 2 problems
e Problem 1 with i, < i, and problem 2 with i, < i,
e If either problem has a solution - there exists a dependence
— How abouti,+ 1 = i

e Add two inequalities to single problem
iyt 1<i,andi < i,+1

Integer Programming Formulation

FOR I = 0 to 5
e Problem 1 A[I+1] = A[I] + 1
0<i,
i, <5
0<i
i <5
i, < i
i+ 1<i
< i,+1

Integer Programming Formulation

FOR I = 0 to 5

e Problem 1 A[I+1] = A[I] + 1
0<i, > -, <0
i, <5 > i, <5
0<i 2> -i.<0
<5 > i <5
i< > - < -1
i+1<i > i-i<-1
< i,+1 -2 -,+i <1

Integer Programming Formulation

e Problem 1 A b
0<i, > -, <0 1 0) (o0
i, <5 > i, <5 1 0 5
0<i > -i<0 0 -1 0
i <5 > <5 0 1 5
< > ig-i<-1 1 -1 -1
1< D> i-i<-1 1 -1 -1
< i+l > - +i<t -1 1) 1y

e and problem 2 with i, < i,

Generalization
e An affine loop nest

FOR i, = f,;(c;..c,) to I (c;..c.)
FOR i, = f,,(i;,¢c;..¢,) to I ,(i;,c,..c.)

FOR i, = £, (i,.1,,,¢c;.¢,) to I (i;.1,,,C;..C)

A[f_,(i,.i,,¢c;.c.), £,(i,.i,,¢c.¢p) e, £ (1;.1,,C7.0)]

o Solve 2*n problems of the form

i, = Jis 12 = Joree i1 = Jn-1r 1n < Jg
i, = Jis i3 = Joree i1 = Jn-1r Jn < 14
i, = Jis 12 = Joree ing < Jna

i, = Jis i = Joree Jn-1 < 1,4

i, = Ji, 12 < Jp

i, = Jy1, J2 < 1,

i, < 3z

J; < 1

Outline

e Why Parallelism

e Parallel Execution

e Parallelizing Compilers

e Dependence Analysis

e Increasing Parallelization Opportunities

Increasing Parallelization
Opportunities

e Scalar Privatization

e Reduction Recognition

e Induction Variable Identification
e Array Privatization

e L oop Transformations

e Granularity of Parallelism

e Interprocedural Parallelization

Scalar Privatization

e Example

FOR 1 =1 to n
X = A[i] * 3;
B[1] = X;

o Is there a loop carried dependence?
e What is the type of dependence?

Privatization

e Analysis:
— Any anti- and output- loop-carried dependences

e Eliminate by assigning in local context
FOR i =1 to n
integer Xtmp;
Xtmp = A[i] * 3;
B[i] = Xtmp;

e Eliminate by expanding into an array
FOR 1i =1 to n
Xtmp[i] = A[i] * 3;
B[i] = Xtmp[i];

Privatization

e Need a final assignment to maintain the correct
value after the loop nest

e Eliminate by assigning in local context

FOR 1 =1 to n
integer Xtmp;
Xtmp = A[i] * 3;
B[i] = Xtmp;
if(i == n) X = Xtmp

e Eliminate by expanding into an array

FOR 1i =1 to n
Xtmp[i] = A[i] * 3;
B[i] = Xtmp[i];

X = Xtmp[n];

Another Example

e How about loop-carried true
dependences?

e Example

FOR 1 =1 to n
X =X+ A[1];

e [s this loop parallelizable?

Reduction Recognition

e Reduction Analysis:
— Only associative operations
— The result is never used within the loop

e Transformation
Integer Xtmp [NUMPROC] ;
Barrier() ;
FOR i = myPid*Iters to MIN((myPid+1l) *Iters, n)
Xtmp [myPid] = Xtmp[myPid] + A[i];
Barrier() ;
If (myPid == 0) {
FOR p = 0 to NUMPROC-1
X =X + Xtmp[p]:

Induction Variables

e Example
FOR i = 0 to N
A[i] = 2%i;
o After strength reduction
t=1
FOR 1 = 0 to N
A[i] = t;
t = t*2;

e What happened to loop carried dependences?

e Need to do opposite of this!

— Perform induction variable analysis
— Rewrite IVs as a function of the loop variable

Array Privatization

e Similar to scalar privatization

e However, analysis is more complex

— Array Data Dependence Analysis:
Checks if two iterations access the same location

— Array Data Flow Analysis:
Checks if two iterations access the same value

e Transformations
— Similar to scalar privatization

— Private copy for each processor or expand with an
additional dimension

Loop Transformations

e A loop may not be parallel as is
e Example

FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,j] = A[1,]3-1] + A[i-1,]];

Loop Transformations

_>J

e A loop may not be parallel as is l
e Example I

FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,j] = A[1,]3-1] + A[i-1,]];

. inew 1 1 ioId

e After loop Skewing L— }{0 JL— }
FOR i = 1 to 2*N-3 - =

FORPAR j = max(1l,i-N+2) to min(i, N-1)

A[i-j+1,3j] = A[i-3+1,3-1] + A[i-3,3];

Granularity of Parallelism

e Example
FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,3] = A[i,3] + A[i-1,3];

e Gets transformed into
FOR i = 1 to N-1
Barrier() ;
FOR j = 1+ myPid*Iters to MIN((myPid+1l) *Iters, n-1)
A[i,j] = A[i,3] + A[i-1,3];
Barrier () ;

}
}
}
:

e Inner loop parallelism can be expensive
— Startup and teardown overhead of parallel regions
— Lot of synchronization
— Can even lead to slowdowns

Granularity of Parallelism

e Inner loop parallelism can be expensive

e Solutions

— Don't parallelize if the amount of work within
the loop is too small

or
— Transform into outer-loop parallelism

Outer Loop Parallelism
—

FOR j = 1 to N-1
A[i,j] = A[i,3j] + A[i-1,3]; |

e Example l

o After Loop Transpose
FOR j = 1 to N-1
FOR i = 1 to N-1 l
A[i,3j] = A[i,3]1 + A[i-1,3];

o Get mapped into
Barrier() ;
FOR j = 1+ myPid*Iters to MIN((myPid+1l) *Iters, n-1)
FOR i = 1 to N-1
A[i,j] = A[i,3] + A[i-1,3];
Barrier () ;

Unimodular Transformations

e Interchange, reverse and skew

e Use a matrix transformation
Inew = A IoId

o Interchange
e Reverse

e Skew

Legality of Transformations

e Unimodular transformation with matrix A is valid iff.
For all dependence vectors v
the first non-zero in Av is positive

e Example
i=1 to N-1
FOR j = 1 to N-1
A[i,3] = A[i,3] + A[i-1,3];

e Interchange
e Reverse A:{_ol ﬂ

e Skew

Interprocedural Parallelization

e Function calls will make a loop unparallelizatble
— Reduction of available parallelism
— A lot of inner-loop parallelism

e Solutions
— Interprocedural Analysis
— Inlining

Interprocedural Parallelization

e Issues
— Same function reused many times
— Analyze a function on each trace - Possibly exponential
— Analyze a function once = unrealizable path problem

e Interprocedural Analysis
— Need to update all the analysis
— Complex analysis
— Can be expensive

e Inlining
— Works with existing analysis
— Large code bloat - can be very expensive

HashSet h;

fori=1ton
int v = compute(i);
h.insert(i);

Are iterations independent?
Can you still execute the loop in parallel?
Do all parallel executions give same result?

Summary

e Multicores are here
— Need parallelism to keep the performance gains
— Programmer defined or compiler extracted parallelism

o Automatic parallelization of loops with arrays
— Requires Data Dependence Analysis
— Iteration space & data space abstraction
— An integer programming problem

e Many optimizations that'll increase parallelism

